

 Navigation

 	
 index

 	khmer-protocols 0.9.0 documentation

khmer protocols

	version:	0.8.5 (unreleased)

This is a set of protocols for doing genomic data analysis – specifically,
de novo mRNAseq assembly and de novo metagenome assembly – in the cloud.

The latest released version of these protocols can always be found
at:

http://khmer-protocols.readthedocs.org/

If you need to reference these protocols, please cite:

Brown, C. Titus; Sheneman, Leigh; Scott, Camille; Crusoe, Michael;
Rosenthal, Josh; Howe, Adina Chuang (2013): khmer-protocols
documentation.
figshare. http://dx.doi.org/10.6084/m9.figshare.878460

Helpful instructions:

	Amazon Web Services instructions – information on Amazon instances

	Commandline conventions – command-line conventions for the khmer protocols

Protocols:

mRNAseq assembly: the Eel Pond Protocol

The Eel Pond mRNAseq Protocol

This is a lightweight protocol for assembling up to a few hundred
million mRNAseq reads, annotating the resulting assembly, and doing
differential expression with RSEM.

Metagenome assembly: the Kalamazoo Protocol

The Kalamazoo Metagenome Assembly protocol

This is a protocol for assembling low- and medium-diversity metagenomes.
Marine sediment and soil data sets may not be assemblable in the cloud
just yet.

Additional information

Need help? Either post comments on the bottom of each page, OR
sign up for the mailing list [http://lists.idyll.org/listinfo/protocols].

Have you used these protocols in a scientific publication? We’ll have
citation instructions up soon.

Funding

khmer-protocols development has largely been supported by AFRI
Competitive Grant no. 2010-65205-20361 [http://ged.msu.edu/downloads/2009-usda-vertex.pdf] from the USDA
NIFA, and Award Number R25HG006243 [http://ged.msu.edu/downloads/2010-ngs-course-nih-r25.pdf] from the
National Institutes of Health, both to C. Titus Brown.
We now have continuing support from
the National Human Genome Research
Institute of the National Institutes of Health under Award Number
R01HG007513 [http://ged.msu.edu/downloads/2012-bigdata-nsf.pdf],
also to C. Titus Brown.

CTB’s work on the Eel Pond mRNAseq tutorial was enabled by his 2013 summer
research work at the Marine Biological Laboratory [http://www.mbl.edu], funded by the Burr and Susie Steinbach Award
and the Laura and Arthur Colwin Endowed Summer Research Fellowship
Fund

TODO:

	remove/transition stuff from the angus site.

	add sfg/stanford: http://sfg.stanford.edu/

	send to biostar-ninjas

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Index

 Navigation

 	
 index

 	khmer-protocols 0.9.0 documentation

Index

 Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.3.1.

_images/amazon-9.png
€« €' https://console.aws.amazon.com/ec2 /v2/home?region=us-east-.

00 OB OEBFRO © O ;=

ebs @ Googles Hangouts 53 ther Bookmarks

Apps [MSUproxy [nbv [Storify this) khmer issues

Services v

Virginia v Help

Y - :
N Connect Actions o % 0

Events
Tags Filter: Allinstances v All instance types v Q i-00538e2c X
Reports
Limits 110 10f 1 Instances
=] INSTANGES @ MName ¥ - InstancelD | InstanceType - Availability Zone - Instance State - | Status Checks -
| Instances
e i-00538e2¢ m1.xlarge us-east-le @ running Z Initializing
Spot Requests
Reserved Instances Instance: | i-00538e2c [Public DNS: ec2-54-205-96-232.compute-1.amazonaws.com _}_N=]
=1 IMAGES [r—
- Description Status Checks ~ Monitoring ~ Tags
s
Instance D -00538e2c Public DNS €c2-54-205-96-
Bundle Tasks
232.compute-
=] ELASTIC BLOGK STORE 1-amazonaws.com
Volumes Instance state running Public IP 54.205.96.232
‘Snapshots Instance type m1.xlarge ElasticlP -
Drivata AN in {02254 Buoilohiling zana 1is-oast-a

© 2008 - 2014, Amazon Web Services, Inc. or its affiliates. Al rights reserved. Privacy Policy Terms of Use Feedback

_images/amazon-6.png
=

i Apps

c

https://console.aws.amazon.com/ec2 /v2/home?regi...) @77 & o % 4,@ O 0=

[MSUproxy [mbv [Storifythis () khmer issues [ebs @ Google+ Hangouts

Select an existing key pair or create a new key pair X

Akey pair consists of a public key that AWS stores, and a private key file that you store. Together,
they allow you to connect to your instance securely. For Windows AMIs, the private key file is required
to obain the password used to log into your instance. For Linux AMIs, the private key file allows you to
securely SSH into your instance.

Note: The selected key palr wil be added to the set of keys authorized for this instance. Learn more
about removing existing key pairs from a public AMI.

T Create a new key pair

Ko

" Download Key Pair

You have to download the private key file (*.pem file) before you can continue.
Store it in a secure and accessible location. You will not be able to download the
file again after it's created.

[Other Bookmarks.

_images/win-puttygen-4.png
18 PuTTY Key Generator . |

File Key Conversions Help
Key
Pubic key for pasting nto OpenSSH authorzed_keys fie:
shsa -
PAABINGAC yC2EAAMAD KA AAABCCOLGZICH 24N DLsSSTR ! |
WaH72t+3anZc+/0p YXaUBadHy314gEQpeKgORINbIY hnihchOj
6120 7rlomAIGkM3ZGLySSgadp
“AQRIYW 73k TLWt0n3cwiuyPoA2pygl6y47VBvanimVUEF AXMErSOngke 1h/i35.CDZ2 ~
Key fingerpint sshisa 2048 c7cd 91id o7 d3cblecT o722 W 87,0841
Key comment: imported-opensshkey
Key passphrase:
Confim passphrase:
Adtons

Generate a publc/private key pair

Load an exising pivate key fie.
Save the generated key

Parameters

Type of key to generste:
SSH1 (RSA)

Numberof bits in 2 generated key:

_images/win-putty-4.png
Ly ubuntu@ip-172-31-1

Systen load: 0.0 Processes: 123
Usage of /: 9.7% of 7.7468 Users logged in: 0

Memory usage: 0% 1P address for eth0: 172.31.10.86
Swap usage: 0%

Graph this data and manage this system at:
nhttps://landscape. canonical . com/

Get cloud support with Ubuntu Advantage Cloud Guest:
nttp://w. ubuntu. com/business/services/cloud

0 packages can be updated.
0 updates are security updates.

The programs included with the Ubuntu system are free software:
the exact distribution terms for each program are described in the
inaividual files in /usr/share/doc/*/copyright.

Ubuntu comes with ABSOLUTELY NO WARRANTY, to the extent permitted by
app1icable 1aw.

[ooincuesp-172-31-20-c6:-5]

amazon/installing-dropbox.html

 Navigation

 		
 index

 		khmer-protocols 0.9.0 documentation »

Installing Dropbox on your EC2 machine

IMPORTANT: Dropbox will sync everything you have to your EC2 machine, so
if you are already using Dropbox for a lot of stuff, you might want to
create a separate Dropbox account just for the course.

Start at the login prompt on your EC2 machine:

cd /root

Then, grab the latest dropbox installation package for Linux:

wget -O dropbox.tar.gz "http://www.dropbox.com/download/?plat=lnx.x86_64"

Unpack it:

tar -xvzf dropbox.tar.gz

Make the Dropbox directory on /mnt and link it in:

mkdir /mnt/Dropbox
ln -fs /mnt/Dropbox /root

and then run it, configuring it to put stuff in /mnt:

HOME=/mnt /root/.dropbox-dist/dropboxd &

When you get a message saying “this client is not linked to any account”,
copy/paste the URL into browser and go log in. Voila!

Your directory ‘/root/Dropbox’, or, equivalently, ‘/mnt/Dropbox’, is now
linked to your Dropbox account!

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.3.1.

_images/amazon-4.png
€« €' https://console.aws.amazon.com/ec2 /v2/homeZre

00 OB OSERRO O D F=

ebs @ Googles Hangouts 53 ther Bookmarks

Apps [MSUproxy [nbv [Storify this) khmer issues

Services v

us Brown v N. Virginia v

1.ChooseAMI 2.ChooseInstance Type 3. Configurelnstance 4.Add Storage 5. Tag Instance 6. Configure Security Group

Step 2: Choose an Instance Type

“ o PRV roa
m1.small 1 17 1x160 -
General purpose m1.medium 1 37 1x410 - M
General purpose m1.large 2 75 2x420 Yes M
4 15 4x420 Yes
c3large 2 375 2x16 (SSD) - M
Comoute ootimized c3xiarae a 75 2 x 40 (SSD) Yes M

Cancel | Previous | @GECVELIETTN Next: Configure Instance Details.
———

© 2008 - 2014, Amazon Web Services, Inc. or its affiliates. Al rights reserved. Privacy Policy Terms of Use F

amazon/log-in-with-ssh-mac.html

 Navigation

 		
 index

 		khmer-protocols 0.9.0 documentation »

Logging into your new instance “in the cloud” (Mac version)

OK, so you’ve created a running computer. How do you get to it?

The main thing you’ll need is the network name of your new computer.
To retrieve this, go to the instance view and click on the instance,
and find the “Public DNS”. This is the public name of your computer
on the Internet.

Copy this name, and connect to that computer with ssh under the username
‘root’, as follows.

First, find your private key file; it’s the .pem file you downloaded
when starting up your EC2 instance. It should be in your Downloads
folder. Move it onto your desktop and rename it to ‘amazon.pem’.

Next, start Terminal (in Applications... Utilities...) and type:

chmod og-rwx ~/Desktop/amazon.pem

to set the permissions on the private key file to “closed to all evildoers”.

Then type:

ssh -i ~/Desktop/amazon.pem ubuntu@ec2-???-???-???-???.compute-1.amazonaws.com

(but you have to replace the stuff after the ‘@’ sign with the name of the host).

Here, you’re logging in as user ‘ubuntu’ to the machine
‘ec2-174-129-122-189.compute-1.amazonaws.com’ using the authentication
key located in ‘amazon.pem’ on your Desktop.

You should now see a text line that starts with something like
ubuntu@ip-10-235-34-223:~$. You’re in! Now type:

sudo bash
cd /root

to switch into superuser mode (see: http://xkcd.com/149/) and go to your
home directory.

This is where the rest of the tutorials will start!

If you have Dropbox, you should now visit Installing Dropbox on your EC2 machine.

You might also want to read about Terminating (shutting down) your EC2 instance.

To log out, type:

exit
logout

or just close the window.

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.3.1.

_images/amazon-1.png
€« (<

hitps:/ /console.aws.amazon.com/console/home?regi... O @7y & B O @ B Q0 ©

=

Apps || MSUproxy | nbv | Storifythis () khmerissues || ebs @ Google+ Hangouts [Other Bookmarks.
Services v Titus Brown v (N. Virginia +) | H
Amazon Web Services Additional Resources
Compute & Networking Deployment & Management App Services Getting Started
CloudFormation AppStream ‘See our documentation to
Templated AWS Resource 22" Low Latency Appication Streaming get started and leam more.
Creation CloudSearch about how to use our
CloudTrail Managed Search Service services.
User Actvty and Changs
ookt o Elastic Transcoder
R Easy-to-use Scalable Media AWS Console Mobile
CloudWatch Transcoding A
Resource and Appication PP
Monitoring. SES View your resources on the
| Elestc Beansiak Emal Sending Service go with our AWS Console
sas bil lable f
. AWS Applcation Container mobile app, available from
Storage & Content Delivery AM Massage Quaue Sarvice Amazon Appstore, Google
e CloudFront B O s nccess Contr SWF Play, or iTunes. ‘
% Global Content Daivery Network Onemorke Workflow Service for Coordnatng
jor Applcation Componants
Glacier [iy e S— AWS Marketplace \
Archive Storage i the Cloud Servics Applications Find and buy software, ‘
s3 @ Trusted Advisor launch with 1-Click and pay
SoatloSorgeintn oot ' AV Gt Opmision en (@) WorkSpaces by the hour.
Deskiops i the Cloud g
Storage Gateway
W T ek Analytics Zocalo X
Environments with Cloud Storage: ‘Secure Enterprise Storage and Service Health ‘
< Data Pipeline Snaring Servica

S Orchestraton for Data-Driven
Database Workflows @ All services operating

amazon/terminating-your-instance.html

 Navigation

 		
 index

 		khmer-protocols 0.9.0 documentation »

Terminating (shutting down) your EC2 instance

While your instance is running, Amazon will happily charge you on a per-hour
basis – check out the pricing [http://www.ec2instances.info/] for more
information. In general, you will want to shut down your instance when
you’re done with it; to do that, go to your EC2 console and find your
running instances (in green).

[image: ../_images/terminate-1.png]
Then, select one or all of them, and go to the ‘Actions...’ menu, and
then select ‘Terminate’. Agree.

After a minute or two, the console should show the instance as “terminated”.

[image: ../_images/terminate-2.png]

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.3.1.

_images/win-puttygen-2.png
Nokey.

Organize = Newfolder

A Favortes 2 N b
15 Downloacs
‘%l Recent Places

aws.png AWS-instance.bt Slidel PNG.

amazon/technical-guide.html

 Navigation

 		
 index

 		khmer-protocols 0.9.0 documentation »

Technical guide to the ANGUS course

Packages we install

Install:

apt-get update
apt-get -y install screen git curl gcc make g++ python-dev unzip \
 default-jre pkg-config libncurses5-dev r-base-core \
 r-cran-gplots python-matplotlib sysstat

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.3.1.

_images/amazon-3.png
& € @ https://console.aws.amazon.com/ec2 /v2 /home7re:

0% 9B O B RO O O 4G

Apps || MSUproxy | nbv | Storifythis () khmerissues || ebs @ Google+ Hangouts [Other Bookmarks.

Services v Thus Brown - N. Virginia v H

1.Choose AMI 2.ChoosslnstanceType 3.Configurelnstance 4.Add Storage 5. Tag nstance 6. Configure Security Group

Step 1: Choose an Amazon Machine Image (AMI) Gancel and Exit

General Purpose (SSD) Volume Type. Amazon EG2 AMI Tools
preinstalled; Apache 2.2, MySQL 5.5, PHP 5.3, and Ruby 1.8.7
available.

oot dovice type: ebs Virtualizaton type: paravirtual

® Ubuntu Server 14.04 LTS (PV), SSD Volume Type
Uanta | 3mi-e84B480 (B4-bit)/ ami-384d8450 (32-bit)

Il Ubuntu Server 14,04 LTS (PV),EBS General Purpose (SSD) Volume ©64-bit ()32-bit
Type. Support available from Canonical
{http:/Awww. ubuntu com/cloud/services).

oot dovice type: ebs Virtualizaton type: paravirtual |

© 2008 - 2014, Amazon Web Services, Inc. or its affiliates. Al rights reserved. Privacy Policy Terms of Use Fe

mrnaseq/7-expression-analysis.html

 Navigation

 		
 index

 		khmer-protocols 0.9.0 documentation »

7. Expression analysis (with RSEM)

In addition to screed, khmer, and eel-pond, you’ll also need to
install bowtie (see 3. Running the Actual Assembly).

Note

You can grab the partitioned and renamed data for nematostella here:

cd /mnt
curl -O http://athyra.idyll.org/~t/trinity-nematostella.renamed.fa.gz
gunzip -c trinity-nematostella.renamed.fa.gz > nematostella.fa

Installing rsem

We’ll be using the RSEM package [http://deweylab.biostat.wisc.edu/rsem/]
to do some expression analysis, and EBSeq [http://www.biostat.wisc.edu/~kendzior/EBSEQ/] to do differential
expression. To install these packages, do:

cd /root
curl -O http://deweylab.biostat.wisc.edu/rsem/src/rsem-1.2.8.tar.gz
tar xzf rsem-1.2.8.tar.gz
cd rsem-1.2.8
make
cd EBSeq
make

And now add this directory into your PATH, which is where Unix looks for
things to run:

echo 'export PATH=$PATH:/root/rsem-1.2.8' >> ~/.bashrc
export PATH=$PATH:/root/rsem-1.2.8

Installing bowtie

If you didn’t install bowtie on this machine already (e.g. as part of
3. Running the Actual Assembly), RSEM needs it; do:

cd /root
curl -O -L http://sourceforge.net/projects/bowtie-bio/files/bowtie/0.12.7/bowtie-0.12.7-linux-x86_64.zip
unzip bowtie-0.12.7-linux-x86_64.zip
cd bowtie-0.12.7
cp bowtie bowtie-build bowtie-inspect /usr/local/bin

Prepare the reference

Go to a working directory on /mnt:

cd /mnt
mkdir rsem
cd rsem

Link in the nematostella file:

ln -fs ../nematostella.fa .

Make a transcript-to-gene-map file:

python /usr/local/share/eel-pond/make-transcript-to-gene-map-file.py nematostella.fa nematostella.fa.tr_to_genes

and ask RSEM to prepare the reference against which to map the reads:

rsem-prepare-reference --transcript-to-gene-map nematostella.fa.tr_to_genes nematostella.fa nema

(Here, the ‘nema’ at the end is what to call the reference; the other
two are just file names.)

This last step will take about half an hour or more.

Find and list the reads

Find the QC reads, and link them in; e.g. if using the Nematostella
reads, make a volume from snap-126cc847, mount it as /data, and do:

ln -fs /data/*.pe.qc.fq.gz .

Now, make a list of the data files:

ls -1 *.pe.qc.fq.gz > list.txt

Note, the order of the files in this list is going to determine the
order in the final RSEM output matrix. You might consider rearranging
it so that your controls are first, etc.

Run RSEM

Now, for each one of the files in ‘list.txt’, run RSEM. This will
take a long time for lots of data, so definitely run this step in screen! :

n=1
for filename in $(cat list.txt)
do
 echo mapping $filename
 gunzip -c $filename > ${n}.fq
 /usr/local/share/khmer/scripts/split-paired-reads.py ${n}.fq
 rsem-calculate-expression --paired-end ${n}.fq.1 ${n}.fq.2 nema -p 4 ${n}.fq
 rm ${n}.fq ${n}.fq.[12] ${n}.fq.transcript.bam ${n}.fq.transcript.sorted.bam
 n=$(($n + 1))
done

Gather results:

rsem-generate-data-matrix [0-9].fq.genes.results 10.fq.genes.results > 0-vs-6-hour.matrix

...and voila, you now have a file, ‘0-vs-6-hour.matrix’,
which is a tab-separated file (that Excel can
load) containing a matrix of gene expression levels in FPKM (rows) vs
condition (columns). The ‘1’ condition will be the first file in
list.txt, the ‘2’ condition will be the second file, etc. If you want
the conditions in a specific order, you can specify the files in the
order you want – e.g. :

rsem-generate-data-matrix 1.fq.genes.results 3.fq.genes.results > results.matrix

Note

Our current protocol only supports pairwise differential expression
analysis, i.e. comparing two conditions, which is why we only
create the 0-vs-6 hour matrix, above.

Next: 8. Differential expression (with EBSeq)

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.3.1.

mrnaseq/2-diginorm.html

 Navigation

 		
 index

 		khmer-protocols 0.9.0 documentation »

2. Applying Digital Normalization

In this section, we’ll apply digital normalization [http://arxiv.org/abs/1203.4802] and variable-coverage k-mer
abundance trimming [https://peerj.com/preprints/890/] to the reads
prior to assembly. This has the effect of reducing the computational
cost of assembly without negatively affecting the quality of the
assembly [https://peerj.com/preprints/505/].

Note

You’ll need ~15 GB of RAM for this, or more if you have a LOT of data.

Link in your data

Make sure your data is in /mnt/work:

ls /mnt/work

Run digital normalization

Apply digital normalization to the paired-end reads

cd /mnt/work
normalize-by-median.py -p -k 20 -C 20 -M 4e9 \
 --savegraph normC20k20.ct -u orphans.fq.gz \
 *.pe.qc.fq.gz

Note the -p in the normalize-by-median command – when run on
PE data, that ensures that no paired ends are orphaned. The -u tells
it that the following filename is unpaired.

Also note the -M parameter. This specifies how much memory diginorm
should use, and should be less than the total memory on the computer
you’re using. (See choosing hash
sizes for khmer [http://khmer.readthedocs.org/en/latest/choosing-hash-sizes.html]
for more information.)

Trim off likely erroneous k-mers

Now, run through all the reads and trim off low-abundance parts of
high-coverage reads

filter-abund.py -V -Z 18 normC20k20.ct *.keep && \
 rm *.keep normC20k20.ct

This will turn some reads into orphans when their partner read is
removed by the trimming.

Rename files

You’ll have a bunch of keep.abundfilt files – let’s make things prettier.

First, let’s break out the orphaned and still-paired reads

for file in *.pe.*.abundfilt
do
 extract-paired-reads.py ${file} && \
 rm ${file}
done

We can combine all of the orphaned reads into a single file

gzip -9c orphans.fq.gz.keep.abundfilt > orphans.keep.abundfilt.fq.gz && \
 rm orphans.fq.gz.keep.abundfilt
for file in *.pe.*.abundfilt.se
do
 gzip -9c ${file} >> orphans.keep.abundfilt.fq.gz && \
 rm ${file}
done

We can also rename the remaining PE reads & compress those files

for file in *.abundfilt.pe
do
 newfile=${file%%.fq.gz.keep.abundfilt.pe}.keep.abundfilt.fq
 mv ${file} ${newfile}
 gzip ${newfile}
done

This leaves you with a bunch of files named *.keep.abundfilt.fq,
which represent the paired-end/interleaved reads that remain after
both digital normalization and error trimming, together with
orphans.keep.fq.gz

Save all these files to a new volume, and get ready to assemble!

Next: 3. Running the Actual Assembly.

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.3.1.

amazon/start-up-an-ec2-instance.html

 Navigation

 		
 index

 		khmer-protocols 0.9.0 documentation »

Start up an EC2 instance

Here, we’re going to startup an Amazon Web Services (AWS) Elastic
Cloud Computing (EC2) “instance”, or computer.

Go to ‘https://aws.amazon.com‘ in a Web browser.

Select ‘My Account/Console’ menu option ‘AWS Management Console.”

Log in with your username & password.

Make sure it says North Virginia in the upper right, then select EC2
(upper left).

[image: ../_images/amazon-1.png]
Select “Launch Instance” (midway down the page).

[image: ../_images/amazon-2.png]
Next, scroll down the list of operating system types until you find
Ubuntu 14.04 LTS (PV) – it should be at the very bottom. Click ‘select’.
(See Starting up a custom operating system if you want to start up a custom
operating system instead of Ubuntu 14.04.)

[image: ../_images/amazon-3.png]
Scroll down the list of instance types until you find “m1.xlarge”. Select
the box to the left, and then click “Review and Launch.”

[image: ../_images/amazon-4.png]
Ignore the warning, check that it says “Ubuntu 14.04 LTS (PV)”, and cick
“Launch”.

[image: ../_images/amazon-5.png]
The first time through, you will have to “create a new key pair”, which
you must then name (something like ‘amazon’) and download.

After this first time, you will be able to select an existing key pair.

[image: ../_images/amazon-6.png]
Select “Launch Instance.”

[image: ../_images/amazon-7.png]
Select “view instance” and you should see a “pending” line in the
menu.

[image: ../_images/amazon-8.png]
Wait until it turns green, then make a note of the “Public DNS” (we
suggest copying and pasting it into a text notepad somewhere). This
is your machine name, which you will need for logging in.

[image: ../_images/amazon-9.png]
Then, go to Logging into your new instance “in the cloud” (Windows version) or Logging into your new instance “in the cloud” (Mac version)

You might also want to read about Terminating (shutting down) your EC2 instance.

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.3.1.

_images/win-putty-2.png
‘Optons contrling SSH authentcation

[C] Bypass authentication entely (SSH-2 o)
Display pre-authentication barner (S5H-2 orly)
Authertication methods

Attempt authentication using Pageant

] Atempt TIS or CryptoCard auth (SSH-1)
fttempt "keyboardinteractive’” auth (SSH2)

Authentication parameters
] Alow agent forwarding

[C] Alow attempted changes of usemame in SSH-2
Privats kel

mrnaseq/5-building-transcript-families.html

 Navigation

 		
 index

 		khmer-protocols 0.9.0 documentation »

5. Building transcript families

Install khmer, screed, and BLAST. (See 1. Quality Trimming and Filtering Your Sequences and
4. BLASTing your assembled data). I would suggest using an m1.large or
m1.xlarge machine.

You’ll also need to setup a personal program binary directory:

mkdir -p ${HOME}/bin
export PATH=${PATH}:${HOME}/bin
echo 'export PATH=${PATH}:${HOME}/bin' >> ${HOME}/.bashrc

Then install a script:

cd ${HOME}/bin
wget https://raw.githubusercontent.com/ctb/eel-pond/protocols-v0.8.3/rename-with-partitions.py
chmod u+x rename-with-partitions.py

Copy in your data

You need your assembled transcriptome (from
e.g. 3. Running the Actual Assembly). Put it in the project directory as
‘trinity-nematostella-raw.fa.gz’:

cd ${HOME}/projects/eelpond
gzip -c trinity_out_dir/Trinity.fasta > trinity-nematostella-raw.fa.gz

For the purposes of your first run through, I suggest just grabbing my copy
of the Nematostella assembly:

cd ${HOME}/projects/eelpond/
curl -O https://s3.amazonaws.com/public.ged.msu.edu/trinity-nematostella-raw.fa.gz

Run khmer partitioning

Partitioning runs a de Bruijn graph-based clustering algorithm that will
cluster your transcripts by transitive sequence overlap. That is, it will
group transcripts into transcript families based on shared sequence.

cd ${HOME}/projects/eelpond
mkdir partitions
cd partitions
do-partition.py -x 1e9 -N 4 --threads ${THREADS:-1} nema \
 ../trinity-nematostella-raw.fa.gz

This should take about 15 minutes, and outputs a file ending in ‘.part’
that contains the partition assignments. Now, group and rename the
sequences:

cd ${HOME}/projects/eelpond/partitions
rename-with-partitions.py nema trinity-nematostella-raw.fa.gz.part
mv trinity-nematostella-raw.fa.gz.part.renamed.fasta.gz \
 trinity-nematostella.renamed.fa.gz

Looking at the renamed sequences

Let’s look at the renamed sequences:

cd ${HOME}/projects/eelpond/partitions
gunzip -c trinity-nematostella.renamed.fa.gz | head

You’ll see that each sequence name looks like this:

>nema.id1.tr16001 1_of_1_in_tr16001 len=261 id=1 tr=16001

Some explanation:

		nema is the prefix that you gave the rename script, above; modify
accordingly for your own organism. It’s best to change it each time
you do an assembly, just to keep things straight.

		
		idN is the unique ID for this sequence; it will never be repeated in this

		file.

		trN is the transcript family, which may contain one or more transcripts.

		1_of_1_in_tr16001 tells you that this transcript family has only
one transcript in it (this one!) Other transcript families may
(will) have more.

		len is the sequence length.

Next: 6. Annotating transcript families

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.3.1.

_images/terminate-1.png
€« C | & https://console.aws.amazon.com/ec2/v2/home?region=us-east-1... 0 @vr & B O & ﬁ,q,@ LRy

Apps || MSUproxy | nbv | Storifythis () khmerissues || ebs @ Google+ Hangouts [Other Bookmarks.
Services v TRusBrown v | N.Virginia v Help v
EC2 Dashboard |
ast v |
- cee
Events
Tags Filter: Running instances v All instance types v Q X
Reports]
Limits 1101 0f 1 Instances
=] INSTANGES @ MName ¥ - InstancelD + InstanceType - Availability Zone - Instance State - | Status Checks - .

| Instances

Spot Requests
|

Reserved Instances

= IMAGES
AMIs

Bundle Tasks Instance: | i-00538e2c Public DNS: ec2-54-205-96-232.compute-1.amazonaws.com _}_N=]

= ELASTIC BLOGK STORE | re—
Description Status Checks ~ Monitoring ~ Tags |

Volumes
Instance D -00538e2c Public DNS €c2-54-205-96-
‘Snapshots
232.compute-
= NETWORK & SEGURITY 1.amazonaws.com |
Security Groups Instance state running Public IP 54.205.96.232
Elastic IPs Instance type m1.xlarge ElasticlP -

© 2008 - 2014, Amazon Web Services, Inc. or its affiliates. Al rights reserved. Privacy Policy Terms of Use Feedback

mrnaseq/1-quality.html

 Navigation

 		
 index

 		khmer-protocols 0.9.0 documentation »

1. Quality Trimming and Filtering Your Sequences

Boot up an m3.xlarge machine from Amazon Web Services running Ubuntu
14.04 LTS (ami-59a4a230); this has about 15 GB of RAM, and 2 CPUs, and
will be enough to complete the assembly of the Nematostella data
set. If you are using your own data, be aware of your space
requirements and obtain an appropriately sized machine (“instance”)
and storage (“volume”).

Note

The raw data for this tutorial is available as public snapshot
snap-f5a9dea7.

Install software

On the new machine, run the following commands to update the base
software:

sudo apt-get update && \
sudo apt-get -y install screen git curl gcc make g++ python-dev unzip \
 default-jre pkg-config libncurses5-dev r-base-core r-cran-gplots \
 python-matplotlib python-pip python-virtualenv sysstat fastqc \
 trimmomatic bowtie samtools blast2

Install khmer [http://khmer.readthedocs.org] from its source code.

cd ~/
python2.7 -m virtualenv work
source work/bin/activate
pip install -U setuptools
git clone --branch v2.0 https://github.com/dib-lab/khmer.git
cd khmer
make install

The use of virtualenv allows us to install Python software without having
root access. If you come back to this protocol in a different terminal session
you will need to run:

source ~/work/bin/activate

Find your data

Load the data from Tulin et al., 2013 [http://www.evodevojournal.com/content/4/1/16] into /mnt/data.
You may need to make the /mnt/ directory writeable by doing:

sudo chmod a+rwxt /mnt

Check:

ls /mnt/data/

If you see all the files you think you should, good! Otherwise, debug.

If you’re using the Tulin et al. data provided in the snapshot above,
you should see a bunch of files like:

0Hour_ATCACG_L002_R1_001.fastq.gz

Link your data into a working directory

Rather than copying the files into the working directory, let’s just
link them in – this creates a reference so that UNIX knows where to
find them but doesn’t need to actually move them around. :

cd /mnt
mkdir -p work
cd work

ln -fs /mnt/data/*.fastq.gz .

(The ln command does the linking.)

Now, do an ls to list the files. If you see only one entry,
*.fastq.gz, then the ln command above didn’t work properly. One
possibility is that your files aren’t in /mnt/data; another is that
their names don’t end with .fastq.gz.

Note

This protocol takes many hours (days!) to run, so you might not want
to run it on all the data the first time. If you’re using the
example data, you can work with a subset of it by running this command
instead of the ln -fs command above:

cd /mnt/data
mkdir -p extract
for file in *.fastq.gz
do
 gunzip -c ${file} | head -400000 | gzip \
 > extract/${file%%.fastq.gz}.extract.fastq.gz
done

This will pull out the first 100,000 reads of each file (4 lines per record)
and put them in the new /mnt/data/extract directory. Then, do:

rm -fr /mnt/work
mkdir /mnt/work
cd /mnt/work
ln -fs /mnt/data/extract/*.fastq.gz /mnt/work

to work with the subset data.

Run FastQC on all your files

We can use FastQC to look at the quality of
your sequences:

fastqc *.fastq.gz

Find the right Illumina adapters

You’ll need to know which Illumina sequencing adapters were used for
your library in order to trim them off. Below, we will use the TruSeq3-PE.fa
adapters

cd /mnt/work
wget https://sources.debian.net/data/main/t/trimmomatic/0.33+dfsg-1/adapters/TruSeq3-PE.fa

Note

You’ll need to make sure these are the right adapters for your
data. If they are the right adapters, you should see that some of
the reads are trimmed; if they’re not, you won’t see anything
get trimmed.

Adapter trim each pair of files

(From this point on, you may want to be running things inside of
screen, so that you can leave it running while you go do something
else; see Using ‘screen’ for more information.)

Run

rm -f orphans.fq.gz

for filename in *_R1_*.fastq.gz
do
 # first, make the base by removing fastq.gz
 base=$(basename $filename .fastq.gz)
 echo $base

 # now, construct the R2 filename by replacing R1 with R2
 baseR2=${base/_R1_/_R2_}
 echo $baseR2

 # finally, run Trimmomatic
 TrimmomaticPE ${base}.fastq.gz ${baseR2}.fastq.gz \
 ${base}.qc.fq.gz s1_se \
 ${baseR2}.qc.fq.gz s2_se \
 ILLUMINACLIP:TruSeq3-PE.fa:2:40:15 \
 LEADING:2 TRAILING:2 \
 SLIDINGWINDOW:4:2 \
 MINLEN:25

 # save the orphans
 gzip -9c s1_se s2_se >> orphans.fq.gz
 rm -f s1_se s2_se
done

Each file with an R1 in its name should have a matching file with an R2 –
these are the paired ends.

The paired sequences output by this set of commands will be in the
files ending in qc.fq.gz, with any orphaned sequences all together
in orphans.fq.gz.

Interleave the sequences

Next, we need to take these R1 and R2 sequences and convert them into
interleaved form, for the next step. To do this, we’ll use scripts
from the khmer package [http://khmer.readthedocs.org], which we
installed above.

Now let’s use a for loop again - you might notice this is only a minor
modification of the previous for loop...

for filename in *_R1_*.qc.fq.gz
do
 # first, make the base by removing .extract.fastq.gz
 base=$(basename $filename .qc.fq.gz)
 echo $base

 # now, construct the R2 filename by replacing R1 with R2
 baseR2=${base/_R1_/_R2_}
 echo $baseR2

 # construct the output filename
 output=${base/_R1_/}.pe.qc.fq.gz

 (interleave-reads.py ${base}.qc.fq.gz ${baseR2}.qc.fq.gz | \
 gzip > $output) && rm ${base}.qc.fq.gz ${baseR2}.qc.fq.gz
done

The final product of this is now a set of files named
*.pe.qc.fq.gz that are paired-end / interleaved and quality
filtered sequences, together with the file orphans.fq.gz that
contains orphaned sequences.

Finishing up

Make the end product files read-only:

chmod u-w *.pe.qc.fq.gz orphans.fq.gz

to make sure you don’t accidentally delete them.

If you linked your original data files into /mnt/work, you can now do

rm *.fastq.gz

to remove them from this location; you don’t need them any more.

Things to think about

Note that the filenames, while ugly, are conveniently structured with the
history of what you’ve done to them. This is a good strategy to keep
in mind.

Evaluate the quality of your files with FastQC again

We can once again use FastQC to look at the
quality of your newly-trimmed sequences:

fastqc *.pe.qc.fq.gz

Next stop: 2. Applying Digital Normalization.

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.3.1.

mrnaseq/3-big-assembly.html

 Navigation

 		
 index

 		khmer-protocols 0.9.0 documentation »

3. Running the Actual Assembly

All of the below should be run in screen, probably... You will want
at least 15 GB of RAM, maybe more.

(If you start up a new machine, you’ll need to go to
1. Quality Trimming and Filtering Your Sequences and go through the Install Software section.)

Note

You can start this tutorial with the contents of EC2/EBS snapshot
snap-7b0b872e.

Installing Trinity

To install Trinity:

cd ${HOME}

wget https://github.com/trinityrnaseq/trinityrnaseq/archive/v2.0.4.tar.gz \
 -O trinity.tar.gz
tar xzf trinity.tar.gz
cd trinityrnaseq*/
make |& tee trinity-build.log

Build the files to assemble

For paired-end data, Trinity expects two files, ‘left’ and ‘right’;
there can be orphan sequences present, however. So, below, we split
all of our interleaved pair files in two, and then add the single-ended
seqs to one of ‘em. :

cd /mnt/work
for file in *.pe.qc.keep.abundfilt.fq.gz
do
 split-paired-reads.py ${file}
done

cat *.1 > left.fq
cat *.2 > right.fq

gunzip -c orphans.keep.abundfilt.fq.gz >> left.fq

Assembling with Trinity

Run the assembler!

${HOME}/trinity*/Trinity --left left.fq \
 --right right.fq --seqType fq --max_memory 14G \
 --CPU ${THREADS:-2}

Note that this last two parts (--max_memory 14G --CPU ${THREADS:-2}) is the
maximum amount of memory and CPUs to use. You can increase (or decrease) them
based on what machine you rented. This size works for the m1.xlarge machines.

Once this completes (on the Nematostella data it might take about 12 hours),
you’ll have an assembled transcriptome in
${HOME}/projects/eelpond/trinity_out_dir/Trinity.fasta.

You can now copy it over via Dropbox, or set it up for BLAST (see
4. BLASTing your assembled data).

Next: 5. Building transcript families (or 4. BLASTing your assembled data).

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.3.1.

amazon/log-in-with-ssh-win.html

 Navigation

 		
 index

 		khmer-protocols 0.9.0 documentation »

Logging into your new instance “in the cloud” (Windows version)

Download Putty and Puttygen from here: http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

Generate a ppk file from your pem file

(You only need to do this once!)

Open puttygen; select “Load”.

[image: ../_images/win-puttygen.png]
Find and load your ‘.pem’ file; it’s probably in your Downloads
folder. Note, you have to select ‘All files’ on the bottom.

[image: ../_images/win-puttygen-2.png]
Load it.

[image: ../_images/win-puttygen-3.png]
Now, “save private key”. Put it somewhere easy to find.

[image: ../_images/win-puttygen-4.png]

Logging into your EC2 instance with Putty

Open up putty, and enter your hostname into the Host Name box.

[image: ../_images/win-putty-1.png]
Now, go find the ‘SSH’ section and enter your ppk file (generated above
by puttygen). Then select ‘Open’.

[image: ../_images/win-putty-2.png]
Log in as “ubuntu”.

[image: ../_images/win-putty-3.png]
Declare victory!

[image: ../_images/win-putty-4.png]
Here, you’re logging in as user ‘ubuntu’ to the machine
‘ec2-174-129-122-189.compute-1.amazonaws.com’ using the authentication
key located in ‘amazon.pem’ on your Desktop.

You should now see a text line that starts with something like
ubuntu@ip-10-235-34-223:~$. You’re in! Now type:

sudo bash
cd /root

to switch into superuser mode (see: http://xkcd.com/149/) and go to your
home directory.

This is where the rest of the tutorials will start!

If you have Dropbox, you should now visit Installing Dropbox on your EC2 machine.

You might also want to read about Terminating (shutting down) your EC2 instance.

To log out, type:

exit
logout

or just close the window.

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.3.1.

amazon/index.html

 Navigation

 		
 index

 		khmer-protocols 0.9.0 documentation »

Amazon Web Services instructions

		Start up an EC2 instance

		Logging into your new instance “in the cloud” (Mac version)

		Logging into your new instance “in the cloud” (Windows version)
		Generate a ppk file from your pem file

		Logging into your EC2 instance with Putty

		Installing Dropbox on your EC2 machine

		Starting up a custom operating system

		Technical guide to the ANGUS course
		Packages we install

		Using ‘screen’
		Persistent Sessions

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.3.1.

search.html

 Navigation

 		
 index

 		khmer-protocols 0.9.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.3.1.

amazon/starting-up-a-custom-ami.html

 Navigation

 		
 index

 		khmer-protocols 0.9.0 documentation »

Starting up a custom operating system

The instructions in Start up an EC2 instance tell you how to
start up a machine with Ubuntu Linux version 14.04 on it, but that
machine comes with very little software installed. For anything
where you are executing actual analyses, you’re going to want to have
a bunch of basic software installed.

Therefore, we make custom versions of Ubuntu available as well, that
come with some software pre-installed. (See Technical guide to the ANGUS course
for a list of the packages installed on the ANGUS custom AMI.)

To boot these, go to EC2/Launch and select “Community AMIs” instead of
the default Quick Start; then type in the AMI number or name given to
you in the tutorial. Below is a screenshot of an example for
‘ami-7606d01e’. Then proceed with the rest of
Start up an EC2 instance.

[image: ../_images/amazon-diff-ami.png]

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.3.1.

amazon/using-screen.html

 Navigation

 		
 index

 		khmer-protocols 0.9.0 documentation »

Using ‘screen’

		Author:		Rosangela Canino-Koning

		Date:		June 9, 2011

		Last Updated:		July 24, 2013

Persistent Sessions

Screen is a window manager for terminal sessions. Screen allows you to
run a terminal session, and then disconnect from the computer, and be
able to return to the session at a later date.

To start screen, you run the screen command with a few options:

screen -S <sessionname>

Where sessionname is any meaningful or descriptive title for your screen
session. This creates an independent terminal session, and connects you to it.

Most commands within screen are composed of a prefix key-stroke,
followed by a command character. By default, the prefix is Ctrl-A. In
this tutorial Ctrl-A will represented by “C-a”.

Let’s try a few screen commands.

To disconnect from the session (while leaving it running!), type:

C-a d

This session will remain active until you choose to end it, or you
reboot the computer. You can at this point safely disconnect from SSH,
and the screen session will continue to run.

To reconnect to the session, make sure you’re logged into the UNIX machine,
and type:

screen -r

To illustrate managing multiple screen session, disconnect from the current
session, and create a new session with a second name.:

C-a d
screen -S <secondsessionname>

Disconnect from the second session, and then list the available sessions:

C-a d
screen -list

Note, typing screen -r with multiple active screen sessions will display
the same information.

To reconnect to the first session, include its name after the -r.:

screen -r <sessionname>

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.3.1.

misc/variant.html

 Navigation

 		
 index

 		khmer-protocols 0.9.0 documentation »

Variant calling

We are using Podar dataset from ...

Install software

You’ll want an m1.large or m1.xlarge for this.

First, we need to install the BWA aligner [http://bio-bwa.sourceforge.net/]:

cd /root
wget -O bwa-0.7.5.tar.bz2 http://sourceforge.net/projects/bio-bwa/files/bwa-0.7.5a.tar.bz2/download

tar xvfj bwa-0.7.5.tar.bz2
cd bwa-0.7.5a
make

cp bwa /usr/local/bin

We also need a new version of samtools [http://samtools.sourceforge.net/]:

cd /root
curl -O -L http://sourceforge.net/projects/samtools/files/samtools/0.1.19/samtools-0.1.19.tar.bz2
tar xvfj samtools-0.1.19.tar.bz2
cd samtools-0.1.19
make
cp samtools /usr/local/bin
cp bcftools/bcftools /usr/local/bin
cd misc/
cp *.pl maq2sam-long maq2sam-short md5fa md5sum-lite wgsim /usr/local/bin/

Download data

Download the reference genome and the resequencing reads:

cd /mnt

curl -O http://athyra.idyll.org/~mahmoud4/all.fa

curl -O ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR606/SRR606249/SRR606249_1.fastq.gz
curl -O ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR606/SRR606249/SRR606249_2.fastq.gz

Do the mapping

Now let’s map all of the reads to the reference. Start by indexing the
reference genome:

cd /mnt

bwa index ref.fa

Now, do the mapping of the raw reads to the reference genome:

bwa aln ref.fa SRR606249_1.fastq.gz > SRR606249_1.sai

bwa aln ref.fa SRR606249_2.fastq.gz > SRR606249_2.sai

Make a SAM file (this would be done with ‘samse’ if these were single
reads):

bwa sampe ref.fa SRR606249_1.sai SRR606249_2.sai SRR606249_1.fastq.gz SRR606249_2.fastq.gz> SRR606249.sam

This file contains all of the information about where each read hits
on the reference.

Next, index the reference genome with samtools:

samtools faidx ref.fa

Convert the SAM into a BAM file:

samtools import ref.fa.fai SRR606249.sam SRR606249.bam

Sort the BAM file:

samtools sort SRR606249.bam SRR606249.sorted

And index the sorted BAM file:

samtools index SRR606249.sorted.bam

At this point you can visualize with tview or Tablet.

‘samtools tview’ is a text interface that you use from the command
line; run it like so:

samtools tview SRR606249.sorted.bam ref.fa

The ‘.’s are places where the reads align perfectly in the forward direction,
and the ‘,’s are places where the reads align perfectly in the reverse
direction. Mismatches are indicated as A, T, C, G, etc.

You can scroll around using left and right arrows; to go to a specific
coordinate, use ‘g’ and then type in the contig name and the position.
For example, type ‘g’ and then ‘rel606:553093<ENTER>’ to go to
position 553093 in the BAM file.

For the Tablet viewer [http://bioinf.scri.ac.uk/tablet/], click on
the link and get it installed on your local computer. Then, start it
up as an application. To open your alignments in Tablet, you’ll need
three files on your local computer: ref.fa, SRR606249.sorted.bam,
and SRR606249.sorted.bam.bai. You can copy them over using Dropbox,
for example.

Calling SNPs

You can use samtools to call SNPs like so:

samtools mpileup -uD -f ref.fa SRR606249.sorted.bam | bcftools view -bvcg - > SRR606249.raw.bcf

(See the ‘mpileup’ docs here [http://samtools.sourceforge.net/mpileup.shtml].)

Now convert the BCF into VCF:

bcftools view SRR606249.raw.bcf > SRR606249.vcf

You can check out the VCF file by using ‘tail’ to look at the bottom:

tail *.vcf

To further analyze the VCF file, take a look at this IPython notebook: hw5-variant-solutions.ipynb [http://nbviewer.ipython.org/github/beacon-center/2013-intro-computational-science/blob/master/hw5-files/hw5-variant-solutions.ipynb].

Other resources

5 things to know about the samtools mpileup tool: http://massgenomics.org/2012/03/5-things-to-know-about-samtools-mpileup.html

VCF file format specification: http://www.1000genomes.org/wiki/Analysis/Variant%20Call%20Format/vcf-variant-call-format-version-41

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.3.1.

GETTING-STARTED.html

 Navigation

 		
 index

 		khmer-protocols 0.9.0 documentation »

		Edit conf.py and replace ‘labibi’ in the ‘project’ line.

		Either replace or eliminate the Google Analytics ID, the disqus name,
and the github information.

html_context = {
 "google_analytics_id" : 'UA-36028965-1',
 "disqus_shortname" : 'labibi',
 "github_base_account" : 'ctb',
 "github_project" : 'labibi',
}

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.3.1.

mrnaseq/8-differential-expression.html

 Navigation

 		
 index

 		khmer-protocols 0.9.0 documentation »

8. Differential expression (with EBSeq)

Note

You can also start with the data on snap-1025bf17; mount it as /data
and do:

cd /mnt
gunzip -c /data/nematostella.fa.gz > ./nematostella.fa
mkdir ebseq
cd ebseq

rsem-generate-data-matrix /data/[0-9].fq.genes.results /data/10.fq.genes.results > 0-vs-6-hour.matrix

Note

If all you have is a genes.results file, you can recover the
*.fq.genes.results files by doing the following:

python /usr/local/share/eel-pond/unpack-genes-matrix.py genes.results

Now run rsem-generate-data-matrix to put together the columns you’re
interested in for the pairwise comparison.

Go to /mnt and make a new directory:

cd /mnt
mkdir ebseq
cd ebseq
cp ../rsem/0-vs-6-hour.matrix .

Next, run EBSeq:

rsem-run-ebseq 0-vs-6-hour.matrix 5,5 0-vs-6-hour.changed

Here, the .matrix file contains 2 conditions, each with 5 replicates;
if you had two replicates, you would call rsem-run-ebseq with 2,2.

The EBSeq output will be in ‘0-vs-6-hour.changed’. Read the docs [http://deweylab.biostat.wisc.edu/rsem/rsem-run-ebseq.html] to
understand what’s in the output file – you’re most interested in the
PPDE (posterior probability that a transcript is differentially
expressed) and the PostFC (posterior fold change) columns, columns 4
and 5.

Finally, let’s extract differentially expressed genes, and combine
them with the annotations in your transcripts file. :

python /usr/local/share/eel-pond/extract-and-annotate-changed.py 0-vs-6-hour.changed /mnt/nematostella.fa 0-vs-6-hour.changed.csv

This will produce a file containing many rows, each with 5 columns:
each row is a transcript family, and the columns are the probability
of that transcript family being differentially expressed (according to
EBSeq), the posterior fold change (calculated by EBSeq), the real
fold change (EBSeq), the transcript family name, and any annotations
that have been assigned to that transcript family.

This file can be opened directly in Excel or most any spreadsheet program.

To visualize the distribution of gene expression in the two conditions you
can do:

python /usr/local/share/eel-pond/plot-expression.py 0-vs-6-hour.matrix 5,5 0-vs-6-hour.changed.csv

This will produce a .PNG image showing all of the genes’ expression levels
in condition 1 against their levels in condition 2, and will show in a
separate color those genes that are differentially expressed. Running it
on the demo data set will produce an image as below

[image: ../_images/0-vs-6-hour.matrix.png]

...and that’s all, folks!

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.3.1.

metagenomics/2-diginorm.html

 Navigation

 		
 index

 		khmer-protocols 0.9.0 documentation »

2. Running digital normalization

Note

Make sure you’re running in screen!

Start with the QC’ed files from 1. Quality Trimming and Filtering Your Sequences or copy them into a
working directory;

Run a First Round of Digital Normalization

Normalize everything to a coverage of 20, starting with the (more valuable)
PE reads; keep pairs using -p, and include orphans with -u.

cd /mnt/work
normalize-by-median.py -p -k 20 -C 20 -M 4e9 \
 --savegraph normC20k20.ct -u orphans.fq.gz *.pe.qc.fq.gz

This produces a set of ‘.keep’ files, as well as a normC20k20.ct
file containing k-mer counts that we will use in the next step.

Note the -x and -N parameters. These specify how much
memory diginorm should use. The product of these should be less than
the memory size of the machine you selected. (See choosing hash
sizes for khmer [http://khmer.readthedocs.org/en/latest/choosing-hash-sizes.html]
for more information.)

Error-trim Our Data

Use ‘filter-abund’ to trim off any k-mers that are abundance-1 in
high-coverage reads. The -V option is used to ignore low coverage
reads that are prevalent in variable abundance data sets:

filter-abund.py -V -Z 18 normC20k20.ct *.keep && \
 rm *.keep normC20k20.ct

This produces .abundfilt files containing the trimmed sequences.

The process of error trimming could have orphaned reads, so split the
PE file into still-interleaved and non-interleaved reads

for file in *.pe.*.abundfilt
do
 extract-paired-reads.py ${file} && \
 rm ${file}
done

This leaves you with PE files (.pe) and SE files (.se). Next, concatenate
all of the *.se files into orphan files

gzip -9c orphans.fq.gz.keep.abundfilt *.se > orphans.keep.abundfilt.fq.gz && \
 rm orphans.fq.gz.keep.abundfilt *.se

Normalize Down to C=5

Now that we’ve eliminated many more erroneous k-mers, let’s ditch some more
high-coverage data. First, normalize the paired-end reads

normalize-by-median.py -C 5 -k 20 -M 4e8 \
 --savegraph normC5k20.ct -p *.abundfilt.pe \
 -u orphans.keep.abundfilt.fq.gz && \
 rm *.abundfilt.pe orphans.keep.abundfilt.fq.gz

Compress and Combine the Files

Now let’s tidy things up. Here are the paired files (kak =
keep/abundfilt/keep)

for file in *.keep.abundfilt.pe.keep
do
 newfile=${file/fq.gz.keep.abundfilt.pe.keep/kak.fq}
 mv ${file} ${newfile}
 gzip -9 ${newfile}
done

and here are the orphaned reads

mv orphans.keep.abundfilt.fq.gz.keep orphans.qc.kak.fq && \
 gzip orphans.qc.kak.fq

If you are not doing partitioning (see 3-partition), you may
want to remove the k-mer hash tables:

rm *.ct

Read Stats

Try running

readstats.py *.kak.fq.gz

after a long wait, you’ll see:

861769600 bp / 8617696 seqs; 100.0 average length -- SRR606249.pe.qc.fq.gz
79586148 bp / 802158 seqs; 99.2 average length -- SRR606249.se.qc.fq.gz
531691400 bp / 5316914 seqs; 100.0 average length -- SRR606249.pe.qc.fq.gz
89903689 bp / 904157 seqs; 99.4 average length -- SRR606249.se.qc.fq.gz

173748898 bp / 1830478 seqs; 94.9 average length -- SRR606249.pe.kak.qc.fq.gz
8825611 bp / 92997 seqs; 94.9 average length -- SRR606249.se.kak.qc.fq.gz
52345833 bp / 550900 seqs; 95.0 average length -- SRR606249.pe.kak.qc.fq.gz
10280721 bp / 105478 seqs; 97.5 average length -- SRR606249.se.kak.qc.fq.gz

This shows you how many sequences were in the original QC files, and
how many are left in the ‘kak’ files. Not bad – considerably more
than 80% of the reads were eliminated in the kak!

Next: 3-partition

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.3.1.

_images/amazon-diff-ami.png
& = C @ https://console.aws.amazon.com/ec2/v2/homerr.. D @c S B O # B0 © & Fy =

Apps (% MSUproy (% mbu [Storifythis) khmer issues [ebs @) Googles Hangouts 53 Other Bookmarks

Services v Titus Brown v N. Virginia v

1.Choose AMI 2.ChoosslnstanceType 3.Configurelnstance 4.Add Storage 5. Tag nstance 6. Configure Security Group

Step 1: Choose an Amazon Machine Image (AMI) Gancel and Exit

An AMI is a template that contains the software configuration (operating system, application server, and applications) required to
launch your instance. You can select an AMI provided by AWS, our user community, or the AWS Marketplace; or you can select one
of your own AMIs.

Quick Start 1t010f 1 AMIs

My AMIs

AWS Marketplace ® 2014-08-03 ubuntu 14.04 angus - ami-7607d01e

test1
Coonmuny s~ [———

v Operating system

© 2008 - 2014, Amazon Web Services, Inc. or its affilates. Al rights reserved. Privacy Policy Terms of Use

_images/amazon-5.png
C | @ https://console.aws.amazon.com/ec2/v2/homeZregi.. D@7 & B O ¢ B GO © O =

Apps (% MSUproxy (" mbu [Storifythis) khmer issues [ebs @ Googles Hangouts 53 Other Bookmarks

Services v Thus Brown - N. Virginia v H

1.ChooseAMI 2. ChooselnstanceType 3.Configureinstance 4.Add Storage 5.Taglnstance 6. Configure Securty Group

Step 7: Review Instance Launch
Please review your instance launch details. You can go back to edit changes for each section. Click Launch to assign a key pair to your
instance and complete the launch process.

A\ 'merove yourinstance's security. Your security group, launch-wizard-1, is open to the world.

Your instance may be accessible from any IP address. We recommend that you update your security group rules to allow
access from known IP addresses only.

You can also open additional ports in your security group to facilitate access to the application or service you're running,
&.9., HTTP (80) for web servers. Edit security groups

~ AMI Details EditAMI |

ntu Server 14,04 LTS (PV), SSD Volume Ty

Ubni 528 T8SD) Volume Type. Support avalable from Canonical

Cancel Previous @

© 2008 - 2014, Amazon Web Services, Inc. or its affiliates. Al rights reserved. Privacy Policy Terms of Use Fe

CHECKLIST.html

 Navigation

 		
 index

 		khmer-protocols 0.9.0 documentation »

 For a new release,

		update versions in docs to vX.Y

		tag new release (vX.Y)

		push tag to ged-lab/khmer-protocols

		tag appropriate versions of khmer, screed, and eel-pond

		blastkit too??

		update readthedocs to point to the appropriate version appropriately.

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.3.1.

mrnaseq/6-annotating-transcript-families.html

 Navigation

 		
 index

 		khmer-protocols 0.9.0 documentation »

6. Annotating transcript families

You can start with the ‘trinity-nematostella.renamed.fa.gz’ file from the
previous page (5. Building transcript families) _or_ download
a precomputed one:

cd ${HOME}/projects/eelpond/partitions
curl -O http://public.ged.msu.edu.s3.amazonaws.com/trinity-nematostella.renamed.fa.gz

Note

The BLASTs below will take a long time, like 24-36 hours. If you
want to work with canned BLASTs, do:

cd ${HOME}/projects/eelpond/annotation
curl -O http://public.ged.msu.edu.s3.amazonaws.com/nema.x.mouse.gz
curl -O http://public.ged.msu.edu.s3.amazonaws.com/mouse.x.nema.gz
gunzip nema.x.mouse.gz
gunzip mouse.x.nema.gz

However, if you built your own transcript families, you’ll need to
rerun these BLASTs.

Doing a preliminary annotation against mouse

Now let’s assign putative homology & orthology to these transcripts, by
doing BLASTs & reciprocal best hit analysis. First, uncompress your
transcripts file:

cd ${HOME}/projects/eelpond/
mkdir annotation
cd annotation
gunzip -c ../partitions/trinity-nematostella.renamed.fa.gz \
 trinity-nematostella.renamed.fa

Now, grab the latest mouse RefSeq:

cd ${HOME}/projects/eelpond/annotation
for file in mouse.1.protein.faa.gz mouse.2.protein.faa.gz
do
 curl -O ftp://ftp.ncbi.nih.gov/refseq/M_musculus/mRNA_Prot/${file}
done
gunzip mouse.[123].protein.faa.gz
cat mouse.[123].protein.faa > mouse.protein.faa

Format both as BLAST databases:

formatdb -i mouse.protein.faa -o T -p T
formatdb -i trinity-nematostella.renamed.fa -o T -p F

And, now, if you haven’t downloaded the canned BLAST data above, run
BLAST in both directions. Note, this may take ~24 hours or longer;
you probably want to run it in screen:

blastx -db mouse.protein.faa -query trinity-nematostella.renamed.fa \
 -evalue 1e-3 -num_threads 8 -num_descriptions 4 -num_alignments 4 \
 -out nema.x.mouse
 tblastn -db trinity-nematostella.renamed.fa -query mouse.protein.faa \
 -evalue 1e-3 -num_threads 8 -num_descriptions 4 -num_alignments 4 \
 -out mouse.x.nema

Assigning names to sequences

Now, calculate putative homology (best BLAST hit) and orthology
(reciprocal best hits):

make-uni-best-hits.py nema.x.mouse nema.x.mouse.homol
make-reciprocal-best-hits.py nema.x.mouse mouse.x.nema nema.x.mouse.ortho

Prepare some of the mouse info:

make-namedb.py mouse.protein.faa mouse.namedb
python -m screed.fadbm mouse.protein.faa

And, finally, annotate the sequences:

annotate-seqs.py trinity-nematostella.renamed.fa nema.x.mouse.ortho \
 nema.x.mouse.homol

After this last, you should see:

207533 sequences total
10471 annotated / ortho
95726 annotated / homol
17215 annotated / tr
123412 total annotated

If any of these numbers are zero on the nematostella data, then you
probably need to redo the BLAST.

This will produce a file ‘trinity-nematostella.renamed.fa.annot’, which
will have sequences that look like this:

>nematostella.id1.tr115222 h=43% => suppressor of tumorigenicity 7 protein isoform 2 [Mus musculus] 1_of_7_in_tr115222 len=1635 id=1 tr=115222 1_of_7_in_tr115222 len=1635 id=1 tr=115222

I suggest renaming this file to ‘nematostella.fa’ and using it for
BLASTs (see 4. BLASTing your assembled data).

cp trinity-nematostella.renamed.fa.annot nematostella.fa

The annotate-seqs command will also produce two CSV files. The first,
trinity-nematostella.renamed.fa.annot.csv, is small, and contains
sequence names linked to orthology and homology information. The secnod,
trinity-nematostella.renamed.fa.annot.large.csv, is large, and
contains all of the same information as in the first but also contains
all of the actual DNA sequence in the last column. (Some spreadsheet
programs may not be able to open it.) You can do:

cp *.csv ${HOME}/Dropbox

to copy them locally, if you have set up Dropbox (see:
Installing Dropbox on your EC2 machine).

Next: 7. Expression analysis (with RSEM).

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.3.1.

metagenomics/5-mapping-and-quantitation.html

 Navigation

 		
 index

 		khmer-protocols 0.9.0 documentation »

5. Mapping and abundance quantitation

Let’s do some simple mapping to do abundance estimation in final assembly.

Bowtie Mapping

Let’s start by installing bowtie <http://bowtie-bio.sourceforge.net/index.shtml>

cd /root
curl -O -L http://sourceforge.net/projects/bowtie-bio/files/bowtie/0.12.7/bowtie-0.12.7-linux-x86_64.zip
unzip bowtie-0.12.7-linux-x86_64.zip
cd bowtie-0.12.7
cp bowtie bowtie-build bowtie-inspect /usr/local/bin

Next, build a bowtie reference from the assembly

cd /mnt/work/
bowtie-build final-assembly.fa metagenome

and then do the mapping

gunzip -c *.pe.qc.fq.gz | bowtie -p 4 -q metagenome - > metagenome.map

At the moment, there seems to be no good way to do automated differential
analysis of two samples, so we’ll just show you how to annotate the
assembled sequences with the mapping abundance. This will allow MG-RAST
to properly weight annotation calls.

To do this, we will need to make two copies of the annotated assembly
with the first abundances.

python /usr/local/share/khmer/sandbox/make-coverage.py final-assembly.fa metagenome.map

mv final-assembly.fa.cov metagenome.fa

What you will see now is that there’s a [cov] annotation for each
sequence in every file – try

head -4 metagenome.fa

and you should see

>testasm.1[cov=259]
CAATTTATTTAAATTTTTCTACGATTCCAACA...
>testasm.2[cov=610]
ATTCTACTAATGTCATCTTTTTACCTTCTAGA...

This format can be uploaded directly to MG-RAST as an
abundance-annotated assembly, although there’s no good way to do
comparative analysis yet.

Next: 6. Annotating your metagenome with Prokka

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.3.1.

README.html

 Navigation

 		
 index

 		khmer-protocols 0.9.0 documentation »

labibi

See http://labibi.readthedocs.org/en/latest/

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.3.1.

mrnaseq/acceptance-3-big-assembly.html

 Navigation

 		
 index

 		khmer-protocols 0.9.0 documentation »

Acceptance tests for khmer

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.3.1.

metagenomics/index.html

 Navigation

 		
 index

 		khmer-protocols 0.9.0 documentation »

The Kalamazoo Metagenome Assembly protocol

		author:		Sherine Awad, Adina Howe and Titus Brown

This is a protocol for assembling low- and medium-diversity
metagenomes. Marine sediment and soil data sets may not be assemblable
in the cloud just yet. It is part of khmer-protocols; see the main
page for this version for citation information, and
the khmer-protocols site [http://khmer-protocols.readthedocs.org/]
for the latest released version.

		1. Quality Trimming and Filtering Your Sequences

		2. Running digital normalization

		4. Assembling

		5. Mapping and abundance quantitation

		6. Annotating your metagenome with Prokka

		7. BLASTing your assembled data

Reference material

Commandline conventions
Amazon Web Services instructions

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.3.1.

mrnaseq/index.html

 Navigation

 		
 index

 		khmer-protocols 0.9.0 documentation »

The Eel Pond mRNAseq Protocol

		author:		
		Titus Brown, Camille Scott, and Leigh Sheneman.

This is a lightweight protocol for assembling up to a few hundred
million mRNAseq reads, annotating the resulting assembly, and doing
differential expression with RSEM. It is part of khmer-protocols; see
the main page for this version for citation
information, and the khmer-protocols site [http://khmer-protocols.readthedocs.org/] for the latest released
version.

This protocol assumes that you have short-insert paired-end Illumina reads.

Special thanks to Dr. Joshua Rosenthal for his help in developing this,
and to Dr. Leslie Babonis for her feedback on various problems!

The tutorial:

		1. Quality Trimming and Filtering Your Sequences

		2. Applying Digital Normalization

		3. Running the Actual Assembly

		4. BLASTing your assembled data

		5. Building transcript families

		6. Annotating transcript families

		7. Expression analysis (with RSEM)

		8. Differential expression (with EBSeq)

Reference material

Commandline conventions
Amazon Web Services instructions

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.3.1.

metagenomics/1-quality.html

 Navigation

 		
 index

 		khmer-protocols 0.9.0 documentation »

1. Quality Trimming and Filtering Your Sequences

Boot up an m1.xlarge machine from Amazon Web Services running Ubuntu 12.04 LTS (ami-59a4a230); this has about 15 GB of RAM, and 2 CPUs, and
will be enough to complete the assembly of the example data set.

On the new machine, run the following commands to update the base
software and install new necessary software

sudo apt-get update && sudo apt-get -y install screen git curl gcc make \
 g++ python-dev unzip default-jre pkg-config libncurses5-dev \
 r-base-core r-cran-gplots python-matplotlib sysstat \
 python-virtualenv fastqc trimmomatic

Note

Some of these commands may take a very long time. Please see
Using ‘screen’.

You may also want to make sure that the default working directory
on Amazon is writeable:

sudo chmod a+rwxt /mnt

Install software

Install khmer [http://khmer.readthedocs.org/]:

cd ~/
python2.7 -m virtualenv work
source work/bin/activate
pip install -U setuptools
git clone --branch v2.0-rc4 https://github.com/dib-lab/khmer.git
cd khmer
make install

The use of virtualenv allows us to install Python software without having
root access. If you come back to this protocol in a different terminal session
you will need to run:

source ~/work/bin/activate

Create Your Work Directory and Link Your Data

Put your data in /mnt/data/.

Then, link your data into a working directory.

Link your data into a working directory

Rather than copying the files into the working directory, let’s just
link them in – this creates a reference so that UNIX knows where to
find them but doesn’t need to actually move them around. :

cd /mnt
mkdir -p work
cd work

ln -fs /mnt/data/*.fastq.gz .

(The ln command does the linking.)

Now, do an ls to list the files. If you see only one entry,
*.fastq.gz, then the ln command above didn’t work properly. One
possibility is that your files aren’t in /mnt/data; another is that
their names don’t end with .fastq.gz.

Note

This protocol takes many hours (days!) to run, so you might not want
to run it on all the data the first time. If you’re using the
example data, you can work with a subset of it by running this command
instead of the ln -fs command above:

cd /mnt/data
mkdir -p extract
for file in *.fastq.gz
do
 gunzip -c ${file} | head -400000 | gzip \
 > extract/${file%%.fastq.gz}.extract.fastq.gz
done

This will pull out the first 100,000 reads of each file (4 lines per record)
and put them in the new /mnt/data/extract directory. Then, do:

rm -fr /mnt/work
mkdir /mnt/work
cd /mnt/work
ln -fs /mnt/data/extract/*.fastq.gz /mnt/work

to work with the subset data.

Run FastQC on all your files

We can use FastQC to look at the quality of
your sequences:

fastqc *.fastq.gz

Find the right Illumina adapters

You’ll need to know which Illumina sequencing adapters were used for
your library in order to trim them off. Below, we will use the TruSeq3-PE.fa
adapters

cd /mnt/work
wget https://sources.debian.net/data/main/t/trimmomatic/0.33+dfsg-1/adapters/TruSeq3-PE.fa

Note

You’ll need to make sure these are the right adapters for your
data. If they are the right adapters, you should see that some of
the reads are trimmed; if they’re not, you won’t see anything
get trimmed.

Trim Your Data

(From this point on, you may want to be running things inside of
screen, so that you can leave it running while you go do something
else; see Using ‘screen’ for more information.)

Run

rm -f orphans.fq.gz

for filename in *_R1_*.fastq.gz
do
 # first, make the base by removing fastq.gz
 base=$(basename $filename .fastq.gz)
 echo $base

 # now, construct the R2 filename by replacing R1 with R2
 baseR2=${base/_R1_/_R2_}
 echo $baseR2

 # finally, run Trimmomatic
 TrimmomaticPE ${base}.fastq.gz ${baseR2}.fastq.gz \
 ${base}.qc.fq.gz s1_se \
 ${baseR2}.qc.fq.gz s2_se \
 ILLUMINACLIP:TruSeq3-PE.fa:2:40:15 \
 LEADING:2 TRAILING:2 \
 SLIDINGWINDOW:4:2 \
 MINLEN:25

 # save the orphans
 gzip -9c s1_se s2_se >> orphans.fq.gz
 rm -f s1_se s2_se
done

Each file with an R1 in its name should have a matching file with an R2 –
these are the paired ends.

The paired sequences output by this set of commands will be in the
files ending in qc.fq.gz, with any orphaned sequences all together
in orphans.fq.gz.

Interleave the sequences

Next, we need to take these R1 and R2 sequences and convert them into
interleaved form, for the next step. To do this, we’ll use scripts
from the khmer package [http://khmer.readthedocs.org], which we
installed above.

Now let’s use a for loop again - you might notice this is only a minor
modification of the previous for loop...

for filename in *_R1_*.qc.fq.gz
do
 # first, make the base by removing .extract.fastq.gz
 base=$(basename $filename .qc.fq.gz)
 echo $base

 # now, construct the R2 filename by replacing R1 with R2
 baseR2=${base/_R1_/_R2_}
 echo $baseR2

 # construct the output filename
 output=${base/_R1_/}.pe.qc.fq.gz

 (interleave-reads.py ${base}.qc.fq.gz ${baseR2}.qc.fq.gz | \
 gzip > $output) && rm ${base}.qc.fq.gz ${baseR2}.qc.fq.gz
done

The final product of this is now a set of files named
*.pe.qc.fq.gz that are paired-end / interleaved and quality
filtered sequences, together with the file orphans.fq.gz that
contains orphaned sequences.

Finishing up

Make the end product files read-only:

chmod u-w *.pe.qc.fq.gz orphans.fq.gz

to make sure you don’t accidentally delete them.

If you linked your original data files into /mnt/work, you can now do

rm *.fastq.gz

to remove them from this location; you don’t need them any more.

Things to think about

Note that the filenames, while ugly, are conveniently structured with the
history of what you’ve done to them. This is a good strategy to keep
in mind.

Evaluate the quality of your files with FastQC again

We can once again use FastQC to look at the
quality of your newly-trimmed sequences:

fastqc *.pe.qc.fq.gz

Next: 2. Running digital normalization

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.3.1.

mrnaseq/0-download-and-save.html

 Navigation

 		
 index

 		khmer-protocols 0.9.0 documentation »

0. Downloading and Saving Your Initial Data

We’re going to run transcriptome assembly completely in the cloud,
because that way (a) you don’t need to buy a big computer, and (b)
I don’t have to figure out all the special details of your own
computer system.

This does mean that the first thing you need to do is get your data
over to the cloud. I tend to just store it there in the first place,
because...

The basics

... Amazon is happy to rent disk space to you, in addition to compute time.
They’ll rent you disk space in a few different ways, but the way that’s
most useful for us is through what’s called Elastic Block Store. This
is essentially a hard-disk rental service.

There are two basic concepts – “volume” and “snapshot”. A “volume” can
be thought of as a pluggable-in hard drive: you create an empty volume of
a given size, attach it to a running instance, and voila! You have extra
hard disk space. Volume-based hard disks have two problems, however:
first, they cannot be used outside of the “availability zone” they’ve
been created in, which means that you need to be careful to put them
in the same zone that your instance is running in; and they can’t be shared
amongst people.

Snapshots, the second concept, are the solution to transporting and
sharing the data on volumes. A “snapshot” is essentially a frozen
copy of your volume; you can copy a volume into a snapshot, and a
snapshot into a volume.

Getting started

Run through Amazon Web Services instructions once, to get the hang of
the mechanics. Essentially you create a disk; attach it; format it; copy things
to and from it.

Downloading and saving your data to a volume

There are many different ways of getting big sequence files to and
from Amazon. The two that I mostly use are curl, which downloads
files from a Web site URL; and ncftp, which is a robust FTP client
that let’s you get files from an FTP site. Sequencing centers almost
always make their data available in one of these two ways.

Note

To use ncftp on your Amazon instance, you may need to install it:

apt-get -y install ncftp

For example, to retrieve a file from an FTP site, you would do something
like:

cd /mnt
ncftp -u <username> ftp://path/to/FTP/site

use cd to find the right directory, and then:

>> mget *

to download the files. Then type ‘quit’.

You can also use curl to download files one at a time from Web or FTP sites.
For example, to save a file from a website, you could use:

cd /mnt
curl -O http://path/to/file/on/website

Once you have the files, figure out their size using du -sh (e.g. after the
above, du -sh /mnt will tell you how much data you have saved under /mnt),
and go create and attach a volume (see Amazon Web Services instructions).

Any files in the ‘/mnt’ directory will be lost when the instance is stopped or
rebooted. However, files stored in the root, ‘/’, directory will remain
available. Thus, it’s a good rule of thumb to do “savepoints” – whenever you
complete a big chunk of work, think about saving the data at that point. I’ve
broken the mRNAseq tutorial down into chunks of work whereyou can do this –
after each Web page, basically. To sync a folder to attached volume simply
type:

rsync -av folder_to_keep /path_to_volume

Some test data

To get started with multfile analysis and assembly, I’ve provided some
test mRNAseq data from embryonic stages of Nematostella vectensis;
the source is this excellent paper [http://www.evodevojournal.com/content/4/1/16] by Tulin et al., “A
quantitative reference transcriptome for Nematostella vectensis”. The
data is on snapshot ‘snap-f5a9dea7’, so go create a volume from that
and mount it as ‘/data’ to get started; to mount it read-only, do:

mount -o ro /dev/xvdf /data

after attaching the volume as ‘sdf’.

Additional information

Throughout this protocol we will be using commandline interfaces. There
is a short document explaining the notations used here. (see Commandline conventions)

Next: 1. Quality Trimming and Filtering Your Sequences

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.3.1.

metagenomics/6-annotating.html

 Navigation

 		
 index

 		khmer-protocols 0.9.0 documentation »

6. Annotating your metagenome with Prokka

Installing Prokka

We’re going to use the Prokka software [http://www.vicbioinformatics.com/software.prokka.shtml] to
annotate your newly assembled metagenome.

We have to download and install a lot of stuff, though – estimated ~15
-20 minutes.

First, we need to install BioPerl and NCBI BLAST+; for this we’ll use
the Debian Linux package installer, ‘apt-get’:

apt-get update
apt-get -y install bioperl ncbi-blast+

Now download and unpack Prokka:

cd /mnt
curl -O http://www.vicbioinformatics.com/prokka-1.7.tar.gz
tar xzf prokka-1.7.tar.gz
curl -O http://www.vicbioinformatics.com/prokka-1.7.2
cp prokka-1.7.2 prokka-1.7/bin/prokka

Prokka depends on a lot of other software, too; so we’ll need to install
all of that.

Install HMMER [http://hmmer.janelia.org/]:

cd /mnt
curl -O ftp://selab.janelia.org/pub/software/hmmer3/3.1b1/hmmer-3.1b1.tar.gz
tar xzf hmmer-3.1b1.tar.gz
cd hmmer-3.1b1/
./configure --prefix=/usr && make && make install

Install Aragorn [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC373265/]:

cd /mnt
curl -O http://mbio-serv2.mbioekol.lu.se/ARAGORN/Downloads/aragorn1.2.36.tgz
tar -xvzf aragorn1.2.36.tgz
cd aragorn1.2.36/
gcc -O3 -ffast-math -finline-functions -o aragorn aragorn1.2.36.c
cp aragorn /usr/local/bin

Install Prodigal [http://prodigal.ornl.gov/]:

cd /mnt
curl -O http://prodigal.googlecode.com/files/prodigal.v2_60.tar.gz
tar xzf prodigal.v2_60.tar.gz
cd prodigal.v2_60/
make
cp prodigal /usr/local/bin

Install tbl2asn [http://www.ncbi.nlm.nih.gov/genbank/tbl2asn2/]:

cd /mnt
curl -O ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools/converters/by_program/tbl2asn/linux64.tbl2asn.gz
gunzip linux64.tbl2asn.gz
mv linux64.tbl2asn tbl2asn
chmod +x tbl2asn
cp tbl2asn /usr/local/bin

Install GNU Parallel [http://www.biostars.org/p/63816/]:

cd /mnt
curl -O http://ftp.gnu.org/gnu/parallel/parallel-20130822.tar.bz2
tar xjvf parallel-20130822.tar.bz2
cd parallel-20130822/
ls
./configure && make && make install

Install Infernal [http://infernal.janelia.org/]:

cd /mnt
curl -O http://selab.janelia.org/software/infernal/infernal-1.1rc4.tar.gz
tar xzf infernal-1.1rc4.tar.gz
cd infernal-1.1rc4/
ls
./configure && make && make install

Running Prokka

Remove all the sequences with ‘N’s in them (since
prodigal fails if there are too many, and prokka uses prodigal):

python /usr/local/share/khmer/sandbox/remove-N.py final-assembly.fa metagenome.fa

Now, run Prokka:

/mnt/prokka-1.7/bin/prokka metagenome.fa --outdir metag --prefix testasm --metagenome

There will be a bunch of files in the directory ‘metag/’. Probably the
most interesting is ‘metag/testasm.faa’, which will contain a set of
annotated protein sequences derived from the metagenome.

Next: 7. BLASTing your assembled data

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.3.1.

_static/up-pressed.png

_static/comment.png

mrnaseq/installing-blastkit.html

 Navigation

 		
 index

 		khmer-protocols 0.9.0 documentation »

4. BLASTing your assembled data

One thing everyone wants to do is BLAST sequence data, right? Here’s a
simple way to set up a stylish little BLAST server that lets you search
your newly assembled sequences.

Installing blastkit

Installing some prerequisites:

pip install pygr whoosh Pillow Jinja2 \
 git+https://github.com/ctb/pygr-draw.git screed
apt-get -y install lighttpd blast2
ln -s /usr/bin/blastall /usr/local/bin/

and configure them:

cd /etc/lighttpd/conf-enabled
ln -fs ../conf-available/10-cgi.conf ./
echo 'cgi.assign = (".cgi" => "")' >> 10-cgi.conf
echo 'index-file.names += ("index.cgi") ' >> 10-cgi.conf

/etc/init.d/lighttpd restart

Next install blastkit:

cd /root
git clone https://github.com/ctb/blastkit.git -b ec2
cd blastkit/www
ln -fs $PWD /var/www/blastkit

mkdir files
chmod a+rxwt files
chmod +x /root

and run check.py:

cd /root/blastkit
python ./check.py

It should say everything is OK.

Adding the data

If you’ve just finished a transcriptome assembly (3. Running the Actual Assembly) then
you can do this to copy your newly generated assembly into the right place:

cd /mnt/work
cp trinity_out_dir/Trinity.fasta /root/blastkit/db/db.fa

Alternatively, you can grab my version of the assembly (from running this
tutorial):

cd /root/blastkit
curl -O https://s3.amazonaws.com/public.ged.msu.edu/trinity-nematostella-raw.fa.gz
gunzip trinity-nematostella-raw.fa.gz
mv trinity-nematostella-raw.fa db/db.fa

Formatting the database

After you’ve done either of the above, format and install the database
for blastkit:

cd /root/blastkit
formatdb -i db/db.fa -o T -p F
python index-db.py db/db.fa

Done!

Note

You can install any file of DNA sequences you want this way; just copy
it into /root/blastkit/db/db.fa and run the indexing commands, above.

Running blastkit

Figure out what your machine name is
(ec2-???-???-???-???.compute-1.amazonaws.com) and go to:

http://machine-name/blastkit/

Make sure you have enabled port 80 in your security settings on Amazon.

(If you’re using the Nematostella data set, try this sequence:

CAGCCTTTAGAAGGAAACAGTGGCAATATATAATTCTAGATGAAGCTCAGAATATCAAAA
ATTTTAAAAGTCAAAGGTGGCAGTTGCTGTTGAATTTTTCAAGTCAGAGGAGACTTTTGT
TGACTGGAACACCTTTGCAGAACAATTTGATGGAGCTGTGGTCGCTTATGCATTTCCTCA
TGCCATCAATGTTTGCTTCTCATAAAGATTTTAGGGAGTGGTTTTCTAACCCTGTTACAG
GGATGATTGAAGGGAATTCAG

It should match something in your assembly.)

Next: 5. Building transcript families

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.3.1.

metagenomics/4-assemble.html

 Navigation

 		
 index

 		khmer-protocols 0.9.0 documentation »

4. Assembling

At last! All that filtering and diginorming is done, and we can get
down to the serious business of assembling. Huzzah!

Install MEGAHIT

We’ve found that the MEGAHIT assembler (Li et al., 2015) [http://www.ncbi.nlm.nih.gov/pubmed/25609793] is a good, fast,
low-memory assembler for metagenomes (and transcriptomes), with no
downsides for short read assembly. You might look at the SPAdes
assembler [http://bioinf.spbau.ru/spades] if you want to
combine long reads.

MEGAHIT is primarily distributed
via GitHub [https://github.com/voutcn/megahit], and you can
find the latest release here [https://github.com/voutcn/megahit/releases/latest]. We’ll be using v1.0.2

cd ~/
curl -L https://github.com/voutcn/megahit/archive/v1.0.2.tar.gz > megahit.tar.gz
tar xzf megahit.tar.gz
cd megahit*
make -j 4
export PATH=$PATH:${PWD}

Install QUAST

We also want to use the QUAST tool to get statistics for the assemblies;
let’s install that

cd ~/
curl -L http://sourceforge.net/projects/quast/files/quast-3.0.tar.gz/download > quast-3.0.tar.gz
tar xvf quast-3.0.tar.gz

Running MEGAHIT

To run MEGAHIT, we need to give it a list of paired-end files, together
with the file full of orphans

cd /mnt/work
PE_FILES=$(ls -1 *.pe.qc.kak.fq.gz | tr '\n' ',')
megahit --12 ${PE_FILES%,} -r orphans.qc.kak.fq.gz

If everything works, you should see ALL DONE. with some other information
at the end. If this command works:

ls megahit_out/done

then your assembly completed, and your final contigs are in megahit_out/final.contigs.fa.

Getting statistics for the assembly

To get some basic stats for the assemblies, run

~/quast-3.0/quast.py megahit_out/final.contigs.fa -o report

and then look at report/report.txt:

less report/report.txt

This will give you all of your basic assembly statistics, should you care :).

Next: 5. Mapping and abundance quantitation.

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.3.1.

docs/command-line.html

 Navigation

 		
 index

 		khmer-protocols 0.9.0 documentation »

Commandline conventions

Throughout this documentation code is surrounded by green boxes. We use certain
conventions in presenting command lines and their arguments.

The most common example of this is the use of <variablename>, when you see
this in code you should replace both the words and the brackets with the
appropriate contents as suggested by the name we used.

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.3.1.

_images/win-puttygen.png

_static/up.png

_static/comment-close.png

_static/comment-bright.png

_static/minus.png

_static/ajax-loader.gif

_static/file.png

_static/down.png

metagenomics/installing-blastkit.html

 Navigation

 		
 index

 		khmer-protocols 0.9.0 documentation »

7. BLASTing your assembled data

One thing everyone wants to do is BLAST sequence data, right? Here’s a
simple way to set up a stylish little BLAST server that lets you search
your newly assembled sequences.

Installing blastkit

Installing some prerequisites:

pip install pygr
pip install whoosh
pip install git+https://github.com/ctb/pygr-draw.git
pip install git+https://github.com/ged-lab/screed.git
apt-get -y install lighttpd

and configure them:

cd /etc/lighttpd/conf-enabled
ln -fs ../conf-available/10-cgi.conf ./
echo 'cgi.assign = (".cgi" => "")' >> 10-cgi.conf
echo 'index-file.names += ("index.cgi") ' >> 10-cgi.conf

/etc/init.d/lighttpd restart

Next, install BLAST:

cd /root

curl -O ftp://ftp.ncbi.nih.gov/blast/executables/release/2.2.24/blast-2.2.24-x64-linux.tar.gz
tar xzf blast-2.2.24-x64-linux.tar.gz
cp blast-2.2.24/bin/* /usr/local/bin
cp -r blast-2.2.24/data /usr/local/blast-data

And put in blastkit:

cd /root
git clone https://github.com/ctb/blastkit.git -b ec2
cd blastkit/www
ln -fs $PWD /var/www/blastkit

mkdir files
chmod a+rxwt files
chmod +x /root

and run check.py:

cd /root/blastkit
python ./check.py

It should say everything is OK.

Adding the data

If you’ve just finished annotating a metagenome assembly
(6. Annotating your metagenome with Prokka) then
you can do this to copy your newly generated assembly into the right place:

cp /mnt/work/metag/testasm.faa /root/blastkit/db/db-prot.fa

Alternatively, you can grab our version of the assembly (from running this
tutorial):

cd /root/blastkit
curl -O http://athyra.idyll.org/~t/testasm.faa
mv testasm.faa db/db-prot.fa

Formatting the database

After you’ve done either of the above, format and install the database
for blastkit:

cd /root/blastkit
formatdb -i db/db-prot.fa -o T -p T
python index-db.py db/db-prot.fa

Done!

Note

You can install any file of protein sequences you want this way; just copy
it into /root/blastkit/db/db-prot.fa and run the indexing commands, above.

Running blastkit

Figure out what your machine name is
(ec2-???-???-???-???.compute-1.amazonaws.com) and go to:

http://machine-name/blastkit/

Make sure you have enabled port 80 in your security settings on Amazon.

(If you’re using the human data set, try this sequence:

MYLYTSYGTYQFLNQIKLNHQERNLFQFSTNDSSIILEESEGKSILKHPSSYQVIDSTGE
FNEHHFYSAIFVPTSEDHRQQLEKKLLHVDVPLSNFGGFKSYRLLKPTEGSTYKIYFGFA
NRTAYEDFKASDIFNENFSKDALSQYFGASGQHSSYFERYLYPIEDH

It should match something in your assembly.)

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.3.1.

metagenomics/7-quast-evaluation.html

 Navigation

 		
 index

 		khmer-protocols 0.9.0 documentation »

7. Quast Evaluation

Install Quast

First, let’s install Quast [http://quast.bioinf.spbau.ru/manual.html]:

cd /root
wget https://downloads.sourceforge.net/project/quast/quast-2.3.tar.gz
tar -xzf quast-2.3.tar.gz
pip install matplotlib

Now, evaluate our assembly:

python /root/quast-2.3/metaquast.py -R /mnt/data/reference.fa -o /mnt/work/assembly-evaluation/ final-assembly.fa

To check the evaluation report :

less /mnt/work/assembly-evaluation/combined_quast_output/report.txt

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.3.1.

_static/down-pressed.png

_images/0-vs-6-hour.matrix.png
Expression in condition 2

10

10°

10

10

10°

10

10

10°

107

10°

all genes
DE genes

107

10° 10 10" 10° 10°

Expression in condition 1

10

10°

10

_static/plus.png

_images/amazon-2.png
& € @ https://console.aws.amazon.com/ec2/v2/home?regi.

00 B OEBFRO © O =

Apps (% MSUproxy (" mbu [Storifythis) khmer issues [ebs @ Googles Hangouts 53 Other Bookmarks

Services v s Brown v N. Virginia v

| EC2 Dashboard Resources € Account Attributes

Events <4

T You are using the following Amazon EC2 resources in the US East (N. Supported Platforms

ags Virginia) region: EC2
Reports . . VPG
Limits 0 Running Instances 0 Elastic IPs
0 Volumes 0 Snapshots Additi
ional
=] INSTANGES i °
0 Key Pairs 0 Load Balancers Information

Instances 0 Placement Groups 1 Security Group

‘Spot Requests Getting Started Guide

Reserved Instances @ Easiy deploy and operate applications - use Chef recipes, Documentation

manage SSH users, and more. Try OpsWorks now. AIEC2 Resources
= IMAGES Hide
Forums
AMIs
Bundle Tasks Create Instar Pricing
reate Instance Contact Us

(=) ELASTIC BLOCK STORE To start using Amazon EC2 you will want to launch a virtual server, known

Volumes as an Amazon EC2 instance. AWS Marketplace

Snapshots “
apsh [r—— Find free software trial
e —

© 2008 - 2014, Amazon Web Services, Inc. or its affilates. Al rights reserved. Privacy Policy Terms of Use Fe

_images/amazon-7.png
& € @ https://console.aws.amazon.com/ec2 /v2/homeZregi.. U @5¢ & B O & BRO o ag=

Apps [MSUproxy () mbv [Storifythis () khmer issues [ebs @) Google+ Hangouts (23 Other Bookmarks

Select an existing key pair or create a new key pair X

Akey pair consists of a public key that AWS stores, and a private key file that you store. Together,
they allow you to connect to your instance securely. For Windows AMIs, the private key file is required
to obtain the password used to log into your instance. For Linux AMIs, the private key file allows you to
securely SSH into your instance.

Note: The selected key palr will be added to the set of keys authorized for this instance. Learn more
about removing existing key pairs from a public AMI.

(Create a newkey pair :

Key pair name

Download Key Pair

You have to download the private key file (*.pem file) before you can continue.
Store it in a secure and accessible location. You will not be able to download the
file again after t's created.

¢ Launch instances)

_images/win-putty-3.png
1ogin as
should be ‘ubuntu’

_images/win-putty-1.png
B8 PUTTY Configuration

-——

& Session 2

£SSH

- Ath

X1

“

Basic optons foryour PuTTY session

‘Specty the destnation you want to connect to

_images/amazon-8.png
€« C | & https://console.aws.amazon.com/ec2/v2/home?region=us-east-... 0 @vr & B O & %E{,@ LRy

Apps MSU proxy nbv. Storify this) khmer issues. ebs @ Google+ Hangouts (0 Other Bookmarks

Services v us Brown v Virginia v Help v
Y -
Actions v
o

Events <« o * 0

Tags Filter: Allinstances v All instance types v Q i-00538e2c X

Reports

Limits 110 10f 1 Instances
=] INSTANGES @ MName ¥ - InstancelD | InstanceType - Availability Zone - Instance State - | Status Checks -
|| tnsta i-00538e2¢ I ndi Z Initiali

i m.dar i nitializi

Spot Requests = = "

Reserved Instances Instance: | i-00538e2c Public DNS: - _B_N=]
=1 IMAGES [r—

- Description | Status Checks ~ Monitoring |~ Tags

s
Sunde Tasks Instance D -00538e2c PublicDNS -
Instance state pending Pubiic 1P

= FLASTIO BLOGKSTORE Instance type m1.xlarge ElasticIP -

Volumes Private DNS - Availabity zone us-east-Te

Snapshots Private IPs - Security groups launch-wizard-1.

© 2008 - 2014, Amazon Web Services, Inc. or its affiliates. Al rights reserved. Privacy Policy Terms of Use Feedback

_images/terminate-2.png
€« C | & https://console.aws.amazon.com/ec2/v2/home?region=us-east-1... 0 @vr & B O & ﬁ,q,@ LRy

Apps || MSUproxy | nbv | Storifythis () khmerissues || ebs @ Google+ Hangouts [Other Bookmarks.
Services v TRusBrown v | N.Virginia v Help v
EC2 Dashboard '
- o e JE |
o

Events « S % 0
Tags Filter: Allinstances v Allinstance types v Q. X
Reports |
Limits 110 2 of 2 Instances

(= INSTANCES Name ¥ - |InstancelD » Instance Type - Availability Zone ~ Instance State - Status Checks - .

| Instances I

mi.xlarge

Spot Requests

Reserved Instances mi xlarge]

=1 IMAGES
AMis
;
Bundle Tasks Instance: | i-00538e2c Public DNS: - m=E8
=] ELASTIC BLOGK STORE [r—
Description | Status Checks ~ Monitoring |~ Tags |
Volumes
i - ;
Snapshots Instance D -00538e2c Public NS
Instance state terminated Pubiic 1P
=