

 Navigation

 	
 index

 	
 next |

 	khmer-protocols 0.8.2 documentation

khmer protocols

	version:	0.8.2 (beta, unreleased)

This is a set of protocols for doing genomic data analysis – specifically,
de novo mRNAseq assembly and de novo metagenome assembly – in the cloud.

The latest released version of these protocols is v0.8.2; please use
the following URL in citations and discussions:

https://khmer-protocols.readthedocs.org/en/v0.8.2/

Protocols:

	The Eel Pond mRNAseq Tutorial

	The Kalamazoo Metagenome Assembly Tutorial

Additional information

Need help? Either post comments on the bottom of each page, OR
sign up for the mailing list [http://lists.idyll.org/listinfo/protocols].

Have you used these protocols in a scientific publication? We’ll have
citation instructions up soon.

Funding

khmer-protocols development has largely been supported by AFRI
Competitive Grant no. 2010-65205-20361 [http://ged.msu.edu/downloads/2009-usda-vertex.pdf] from the USDA
NIFA, and Award Number R25HG006243 [http://ged.msu.edu/downloads/2010-ngs-course-nih-r25.pdf] from the
National Institutes of Health, both to C. Titus Brown.
We now have continuing support from
the National Human Genome Research
Institute of the National Institutes of Health under Award Number
R01HG007513 [http://ged.msu.edu/downloads/2012-bigdata-nsf.pdf],
also to C. Titus Brown.

CTB’s work on the Eel Pond mRNAseq tutorial was enabled by his 2013 summer
research work at the Marine Biological Laboratory [http://www.mbl.edu], funded by the Burr and Susie Steinbach Award
and the Laura and Arthur Colwin Endowed Summer Research Fellowship
Fund

TODO:

	remove/transition stuff from the angus site.

	add sfg/stanford: http://sfg.stanford.edu/

	send to biostar-ninjas

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 The Eel Pond mRNAseq Tutorial

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	khmer-protocols 0.8.2 documentation

The Eel Pond mRNAseq Tutorial

	author:	Titus Brown, Chris Welcher, and Leigh Sheneman.

Special thanks to Dr. Joshua Rosenthal for his help in testing this!

The tutorial:

	0. Downloading and Saving Your Initial Data

	1. Quality Trimming and Filtering Your Sequences

	2. Applying Digital Normalization

	3. Running the Actual Assembly

	BLASTing your assembled data

	5. Building transcript families and annotating the sequences

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 0. Downloading and Saving Your Initial Data

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	khmer-protocols 0.8.2 documentation

 	The Eel Pond mRNAseq Tutorial

0. Downloading and Saving Your Initial Data

We’re going to run transcriptome assembly completely in the cloud,
because that way (a) you don’t need to buy a big computer, and (b)
I don’t have to figure out all the special details of your own
computer system.

This does mean that the first thing you need to do is get your data
over to the cloud. I tend to just store it there in the first place,
because...

The basics

...Amazon is happy to rent disk space to you, in addition to compute time.
They’ll rent you disk space in a few different ways, but the way that’s
most useful for us is through what’s called Elastic Block Store. This
is essentially a hard-disk rental service.

There are two basic concepts – “volume” and “snapshot”. A “volume” can
be thought of as a pluggable-in hard drive: you create an empty volume of
a given size, attach it to a running instance, and voila! You have extra
hard disk space. Volume-based hard disks have two problems, however:
first, they cannot be used outside of the “availability zone” they’ve
been created in, which means that you need to be careful to put them
in the same zone that your instance is running in; and they can’t be shared
amongst people.

Snapshots, the second concept, are the solution to transporting and
sharing the data on volumes. A “snapshot” is essentially a frozen
copy of your volume; you can copy a volume into a snapshot, and a
snapshot into a volume.

Getting started

Run through Storing data persistently with Amazon once, to get the hang of
the mechanics. Essentially you create a disk; attach it; format it;
and then copy things to and from it.

Downloading and saving your data to a volume

There are many different ways of getting big sequence files to and
from Amazon. The two that I mostly use are ‘curl’, which downloads
files from a Web site URL; and ‘ncftp’, which is a robust FTP client
that let’s you get files from an FTP site. Sequencing centers almost
always make their data available in one of these two ways.

Note

To use ncftp on your Amazon instance, you may need to install it:

apt-get -y install ncftp

For example, to retrieve a file from an FTP site, you would do something
like:

cd /mnt
ncftp -u <username> ftp://path/to/FTP/site

use ‘cd’ to find the right directory, and then:

>> mget *

to download the files. Then type ‘quit’. You can also use ‘curl’ to
download files one at a time from Web or FTP sites.

Once you have the files, figure out their size using ‘du -sk’ (e.g. after the
above, ‘du -sk /mnt’ will tell you how much data you have saved under /mnt),
and go create and attach a volume (see Storing data persistently with Amazon).

This data is now something that will stick around when you shut down
your instance. It’s a good rule of thumb to do “savepoints” – whenever
you complete a big chunk of work, think about saving the data at that
point. I’ve broken the mRNAseq tutorial down into chunks of work where
you can do this – after each Web page, basically.

Some test data

To get started with multfile analysis and assembly, I’ve provided some
test mRNAseq data from embryonic stages of Nematostella vectensis;
the source is this excellent paper [http://www.evodevojournal.com/content/4/1/16] by Tulin et al., “A
quantitative reference transcriptome for Nematostella vectensis”. The
data is on snapshot ‘snap-f5a9dea7’, so go create a volume from that
and mount it as ‘/data’ to get started.

Next: 1. Quality Trimming and Filtering Your Sequences

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 1. Quality Trimming and Filtering Your Sequences

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	khmer-protocols 0.8.2 documentation

 	The Eel Pond mRNAseq Tutorial

1. Quality Trimming and Filtering Your Sequences

Boot up an m1.xlarge machine from Amazon Web Services; this has about
15 GB of RAM, and 2 CPUs, and will be enough to complete the assembly
of the Nematostella data set.

Note

This follows the NGS 2013 tutorial,
Short-read quality evaluation [http://ged.msu.edu/angus/tutorials-2013/short-read-quality-evaluation.html],
but for multiple files.

Note

The end results of this tutorial are available as public snapshot
snap-8b155fd9 on EC2/EBS.

Install software

Install screed:

cd /usr/local/share
git clone https://github.com/ged-lab/screed.git
cd screed
python setup.py install

Install the bleeding-edge version of khmer:

cd /usr/local/share
git clone https://github.com/ged-lab/khmer.git -b bleeding-edge
cd khmer
make

echo 'export PYTHONPATH=/usr/local/share/khmer/python' >> ~/.bashrc
source ~/.bashrc

Install Trimmomatic:

cd /root
curl -O http://www.usadellab.org/cms/uploads/supplementary/Trimmomatic/Trimmomatic-0.27.zip
unzip Trimmomatic-0.27.zip
cp Trimmomatic-0.27/trimmomatic-0.27.jar /usr/local/bin

Install libgtextutils and fastx:

cd /root
curl -O http://hannonlab.cshl.edu/fastx_toolkit/libgtextutils-0.6.1.tar.bz2
tar xjf libgtextutils-0.6.1.tar.bz2
cd libgtextutils-0.6.1/
./configure && make && make install

cd /root
curl -O http://hannonlab.cshl.edu/fastx_toolkit/fastx_toolkit-0.0.13.2.tar.bz2
tar xjf fastx_toolkit-0.0.13.2.tar.bz2
cd fastx_toolkit-0.0.13.2/
./configure && make && make install

In each of these cases, we’re downloading the software – you can use
google to figure out what each package is and does if we don’t discuss
it below. We’re then unpacking it, sometimes compiling it (which we
can discuss later), and then installing it for general use.

Find your data

Either load in your own data (as in 0. Downloading and Saving Your Initial Data) or
create a volume from snapshot snap-f5a9dea7 and mount it as /data
(again, this is the data from Tulin et al., 2013 [http://www.evodevojournal.com/content/4/1/16]).

Check:

ls /data

If you see all the files you think you should, good! Otherwise, debug.

If you’re using the Tulin et al. data provided in the snapshot above,
you should see a bunch of files like:

/data/0Hour_ATCACG_L002_R1_001.fastq.gz

Link your data into a working directory

Rather than copying the files into the working directory, let’s just
link them in – this creates a reference so that UNIX knows where to
find them but doesn’t need to actually move them around.

cd /mnt
mkdir work
cd work

ln -fs /data/*.fastq.gz .

(The ‘ln’ command is what does the linking.)

Now, do an ‘ls’ to list the files. If you see only one entry, *.fastq.gz,
then the ln command above didn’t work properly. One possibility is that
your files aren’t in /data; another is that they’re not named *.fastq.gz.

Download the Illumina adapters

In the working directory,

curl -O https://s3.amazonaws.com/public.ged.msu.edu/illuminaClipping.fa

Note

You’ll need to make sure these are the right adapters for your data.
If they are, you should see that some of them are trimmed off, below;
if they’re not, you shouldn’t see anything get trimmed.

Adapter trim each pair of files

(From this point on, you may want to be running things inside of
screen, so that you detach and log out while it’s running; see
Using ‘screen’ for more information.)

If you’re following along using the Nematostella data, you should have a
bunch of files that look like this (use ‘ls’ to show them):

24HourB_GCCAAT_L002_R1_001.fastq.gz
 ^^

Each file with an R1 in its name should have a matching file with an R2 –
these are the paired ends.

Note

You’ll need to replace <R1 FILE> and <R2 FILE>, below, with the
names of your actual R1 and R2 files. You’ll also need to replace
<SAMPLE NAME> with something that’s unique to each pair of files.
It doesn’t really matter what, but you need to make sure it’s different
for each pair of files.

For each of these pairs, run the following:

make a temp directory
mkdir trim
cd trim

run trimmomatic
java -jar /usr/local/bin/trimmomatic-0.27.jar PE <R1 FILE> <R2 FILE> s1_pe s1_se s2_pe s2_se ILLUMINACLIP:../illuminaClipping.fa:2:30:10

interleave the remaining paired-end files
/usr/local/share/khmer/scripts/interleave-reads.py s1_pe s2_pe | gzip -9c > ../<SAMPLE NAME>.pe.fq.gz

combine the single-ended files
cat s1_se s2_se | gzip -9c > ../<SAMPLE NAME>.se.fq.gz

go back up to the working directory and remove the temp directory
cd ..
rm -r trim

make it hard to delete the files you just created
chmod u-w *.pe.fq.gz *.se.fq.gz

To get a basic idea of what’s going on, please read the ‘#’ comments
above, but, briefly, this set of commands:

	creates a temporary directory, ‘trim/’

	runs ‘Trimmomatic’ in that directory to trim off the adapters, and then
puts remaining pairs (most of them!) in s1_pe and s2_pe, and any orphaned
singletons in s1_se and s2_se.

	interleaves the paired ends and puts them back in the working directory

	combines the orphaned reads and puts them back in the working directory

At the end of this you will have new files ending in ‘.pe.fq.gz’ and
‘.se.fq.gz’, representing the paired and orphaned quality trimmed
reads, respectively.

Automating things a bit

OK, once you’ve done this once or twice, it gets kind of tedious, doesn’t it?
I’ve written a script to write these commands out automatically. Run it
like so:

cd /mnt/work
python /usr/local/share/khmer/sandbox/write-trimmomatic.py > trim.sh

Run this, and then look at ‘trim.sh’ using the ‘more’ command –

more trim.sh

If it looks like it contains the right commands, you can run it by doing:

bash trim.sh

Note

This is a prime example of scripting to make your life much easier
and less error prone. Take a look at this file sometime –
‘more /usr/local/share/khmer/sandbox/write-trimmomatic.py’ – to get
some idea of how this works.

Quality trim each pair of files

After you run this, you should have a bunch of ‘.pe.fq.gz’ files and
a bunch of ‘.se.fq.gz’ files. The former are files that contain paired,
interleaved sequences; the latter contain single-ended, non-interleaved
sequences.

Next, for each of these files, run:

gunzip -c <filename> | fastq_quality_filter -Q33 -q 30 -p 50 | gzip -9c > <filename>.qc.fq.gz

This uncompresses each file, removes poor-quality sequences, and then
recompresses it. Note that (following Short-read quality evaluation [http://kbroman.wordpress.com/2013/08/20/electronic-lab-notebook/])
you can also trim to a specific length by putting in a ‘fastx_trimmer
-Q33 -l 70 |‘ into the mix.

If fastq_quality_filter complains about invalid quality scores, try
removing the -Q33 in the command; Illumina has blessed us with multiple
quality score encodings.

Automating this step

This step can be automated with a ‘for’ loop at the shell prompt. Try:

for i in *.pe.fq.gz *.se.fq.gz
do
 echo working with $i
 newfile="$(basename $i .fq.gz)"
 gunzip -c $i | fastq_quality_filter -Q33 -q 30 -p 50 | gzip -9c > "${newfile}.qc.fq.gz"
done

What this loop does is:

	for every file ending in pe.fq.gz and se.fq.gz,

	print out a message with the filename,

	construct a name ‘newfile’ that omits the trailing .fq.gz

	uncompresses the original file, passes it through fastq, recompresses it,
and saves it as ‘newfile’.qc.fq.gz

Extracting paired ends from the interleaved files

The fastx utilities that we’re using to do quality trimming aren’t
paired-end aware; they’re removing individual sequences. Because the
pe files are interleaved, this means that there may now be some orphaned
sequences in there. Downstream, we will want to pay special attention
to the remaining paired sequences, so we want to separate out the pe
and se files. How do we go about that? Another script, of course!

The khmer script ‘strip-and-split-for-assembly.py’ does exactly that.
You run it on an interleaved file that may have some orphans, and it
produces .pe and .se files afterwards, containing pairs and orphans
respectively.

To run it on all of the pe qc files, do:

for i in *.pe.qc.fq.gz
do
 /usr/local/share/khmer/scripts/extract-paired-reads.py $i
done

Finishing up

You should now have a whole mess of files. For example, in the Nematostella
data, for each of the original input files, you’ll have:

24HourB_GCCAAT_L002_R1_001.fastq.gz - the original data
24HourB_GCCAAT_L002_R2_001.fastq.gz
24HourB_GCCAAT_L002_R1_001.pe.fq.gz - adapter trimmed pe
24HourB_GCCAAT_L002_R1_001.pe.qc.fq.gz - FASTX filtered
24HourB_GCCAAT_L002_R1_001.pe.qc.fq.gz.pe - FASTX filtered PE
24HourB_GCCAAT_L002_R1_001.pe.qc.fq.gz.se - FASTX filtered SE
24HourB_GCCAAT_L002_R1_001.se.fq.gz - adapter trimmed orphans
24HourB_GCCAAT_L002_R1_001.se.qc.fq.gz - FASTX filtered orphans

Yikes! What to do?

Well, first, you can get rid of the original data. You already have it on a
disk somewhere, right?

rm *.fastq.gz

Next, you can get rid of the ‘pe.fq.gz’ and ‘se.fq.gz’ files, since you
only want the QC files. So:

rm *.pe.fq.gz *.se.fq.gz

And, finally, you can toss the pe.fq.gz files, because you’ve turned those
into .pe and .se files.

rm *.pe.qc.fq.gz

So now you should be left with only three files for each sample:

24HourB_GCCAAT_L002_R1_001.pe.qc.fq.gz.pe - FASTX filtered PE
24HourB_GCCAAT_L002_R1_001.pe.qc.fq.gz.se - FASTX filtered SE
24HourB_GCCAAT_L002_R1_001.se.qc.fq.gz - FASTX filtered orphans

Things to think about

Note that the filenames, while ugly, are conveniently structured with the
history of what you’ve done. This is a good idea.

Also note that we’ve conveniently named the files so that we can remove
the unwanted ones en masse. This is a good idea, too.

Renaming files

I’m a fan of keeping the files named somewhat sensibly, and keeping them
compressed. Let’s do some mass renaming:

for i in *.pe.qc.fq.gz.pe
do
 newfile="$(basename $i .pe.qc.fq.gz.pe).pe.qc.fq"
 mv $i $newfile
 gzip $newfile
done

and also some mass combining:

for i in *.pe.qc.fq.gz.se
do
 otherfile="$(basename $i .pe.qc.fq.gz.se).se.qc.fq.gz"
 gunzip -c $otherfile > combine
 cat $i >> combine
 gzip -c combine > $otherfile
 rm $i
done

and finally, make the end product files read-only:

chmod u-w *.qc.fq.gz

to make sure you don’t accidentally delete something.

Saving the files

At this point, you should save these files, which will be used in two
ways: first, for assembly; and second, for mapping, to do quantitation
and ultimately comparative expression analysis. You can save them by
doing this:

mkdir save
mv *.qc.fq.gz save
du -sk save

This puts the data you want to save into a subdirectory named ‘save’, and
calculates the size.

Now, create a volume of the given size – divide by a thousand to get
gigabytes, multiply by 1.1 to make sure you have enough room, and then
follow the instructions in Storing data persistently with Amazon. Once
you’ve mounted it properly (I would suggest mounting it on /save
instead of /data!), then do

rsync -av save /save

which will copy all of the files over from the ./save directory onto the
‘/save’ disk. Then ‘umount /save’ and voila, you’ve got a copy of the files!

Next stop: 2. Applying Digital Normalization.

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 2. Applying Digital Normalization

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	khmer-protocols 0.8.2 documentation

 	The Eel Pond mRNAseq Tutorial

2. Applying Digital Normalization

Note

You can start this tutorial with the contents of EC2/EBS snapshot
snap-126cc847.

Note

You’ll need ~15 GB of RAM for this, or more if you have a LOT of data.

Link in your data

Make sure your data is in /mnt/work/. If you’ve loaded it onto /data,
you can do:

cd /mnt
mkdir work
cd /mnt/work
ln -fs /data/*.qc.fq.gz .

Run digital normalization

Apply digital normalization to the paired-end reads:

/usr/local/share/khmer/scripts/normalize-by-median.py -p -k 20 -C 20 -N 4 -x 3e9 --savehash normC20k20.kh *.pe.qc.fq.gz

and then to the single-end reads:

/usr/local/share/khmer/scripts/normalize-by-median.py -C 20 --loadhash normC20k20.kh --savehash normC20k20.kh *.se.qc.fq.gz

Note the ‘-p’ in the first normalize-by-median command – when run on
PE data, that ensures that no paired ends are orphaned. However, it
will complain on single-ended data, so you have to give the data to it
separately.

Also note the ‘-N’ and ‘-x’ parameters. These specify how much memory
diginorm should use. The product of these should be less than the
memory size of the machine you selected. The maximum needed for any
transcriptome should be in the ~60 GB range, e.g. -N 4 -x 15e9; for
only a few hundred million reads, 16 GB should be plenty. (See
choosing hash sizes for khmer [http://khmer.readthedocs.org/en/latest/choosing-hash-sizes.html]
for more information.)

Trim off likely erroneous k-mers

Now, run through all the reads and trim off low-abundance parts of
high-coverage reads:

/usr/local/share/khmer/scripts/filter-abund.py -V normC20k20.kh *.keep

This will turn some reads into orphans, but that’s ok – their partner
read was bad.

Rename files

You’ll have a bunch of ‘keep.abundfilt’ files – let’s make things prettier.

First, let’s break out the orphaned and still-paired reads:

for i in *.pe.*.abundfilt;
do
 /usr/local/share/khmer/scripts/extract-paired-reads.py $i
done

We can combine the orphaned reads into a single file:

for i in *.se.qc.fq.gz.keep.abundfilt
do
 pe_orphans=$(basename $i .se.qc.fq.gz.keep.abundfilt).pe.qc.fq.gz.keep.abundfilt.se
 newfile=$(basename $i .se.qc.fq.gz.keep.abundfilt).se.qc.keep.abundfilt.fq.gz
 cat $i $pe_orphans | gzip -c > $newfile
done

We can also rename the remaining PE reads & compress those files:

for i in *.abundfilt.pe
do
 newfile=$(basename $i .fq.gz.keep.abundfilt.pe).keep.abundfilt.fq
 mv $i $newfile
 gzip $newfile
done

This leaves you with a whole passel o’ files, most of which you want to go
away!

6Hour_CGATGT_L002_R1_005.pe.qc.fq.gz
6Hour_CGATGT_L002_R1_005.pe.qc.fq.gz.keep
6Hour_CGATGT_L002_R1_005.pe.qc.fq.gz.keep.abundfilt
6Hour_CGATGT_L002_R1_005.pe.qc.fq.gz.keep.abundfilt.se
6Hour_CGATGT_L002_R1_005.se.qc.fq.gz
6Hour_CGATGT_L002_R1_005.se.qc.fq.gz.keep
6Hour_CGATGT_L002_R1_005.se.qc.fq.gz.keep.abundfilt

So, finally, let’s get rid of a lot of the old files

rm *.se.qc.fq.gz.keep.abundfilt
rm *.pe.qc.fq.gz.keep.abundfilt.se
rm *.keep
rm *.abundfilt
rm *.qc.fq.gz

Gut check

You should now have:

6Hour_CGATGT_L002_R1_005.pe.qc.keep.abundfilt.fq.gz
6Hour_CGATGT_L002_R1_005.se.qc.keep.abundfilt.fq.gz

These files are, respectively, the paired (pe) quality-filtered (qc)
digitally normalized (keep) abundance-trimmed (abundfilt) FASTQ (fq)
gzipped (gz) sequences, and the orphaned (se) quality-filtered (qc)
digitally normalized (keep) abundance-trimmed (abundfilt) FASTQ (fq)
gzipped (gz) sequences.

Save all these files to a new volume, and get ready to assemble!

Next: 3. Running the Actual Assembly.

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 3. Running the Actual Assembly

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	khmer-protocols 0.8.2 documentation

 	The Eel Pond mRNAseq Tutorial

3. Running the Actual Assembly

All of the below should be run in screen, probably... You will want
at least 15 GB of RAM, maybe more.

(If you start up a new machine, you’ll need to go to
1. Quality Trimming and Filtering Your Sequences and install khmer and screed.)

Note

You can start this tutorial with the contents of EC2/EBS snapshot
snap-7b0b872e.

Installing Trinity

To install Trinity:

cd /root

curl -L http://sourceforge.net/projects/trinityrnaseq/files/latest/download?source=files > trinity.tar.gz

tar xzf trinity.tar.gz
cd trinityrnaseq*
export FORCE_UNSAFE_CONFIGURE=1
make

Install bowtie

Download and install bowtie:

cd /root
curl -O -L http://sourceforge.net/projects/bowtie-bio/files/bowtie/0.12.7/bowtie-0.12.7-linux-x86_64.zip
unzip bowtie-0.12.7-linux-x86_64.zip
cd bowtie-0.12.7
cp bowtie bowtie-build bowtie-inspect /usr/local/bin

Build the files to assemble

For paired-end data, Trinity expects two files, ‘left’ and ‘right’;
there can be orphan sequences present, however. So, below, we split
all of our interleaved pair files in two, and then add the single-ended
seqs to one of ‘em.

cd /mnt/work
for i in *.pe.qc.keep.abundfilt.fq.gz
do
 python /usr/local/share/khmer/scripts/split-paired-reads.py $i
done

cat *.1 > left.fq
cat *.2 > right.fq

gunzip -c *.se.qc.keep.abundfilt.fq.gz >> left.fq

Assembling with Trinity

Run the assembler!

/root/trinityrnaseq_r2013-02-25/Trinity.pl --left left.fq --right right.fq --seqType fq -JM 15G

Note that this last bit (15G) is the maximum amount of memory to use. You
can increase (or decrease) it based on what machine you rented. This size
works for the m1.xlarge machines.

Once this completes (on the Nematostella data it might take about 12 hours),
you’ll have an assembled transcriptome in trinity_out_dir/Trinity.fasta.

You can now copy it over via Dropbox, or set it up for BLAST (see
BLASTing your assembled data).

Next: 5. Building transcript families and annotating the sequences.

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 BLASTing your assembled data

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	khmer-protocols 0.8.2 documentation

 	The Eel Pond mRNAseq Tutorial

BLASTing your assembled data

One thing everyone wants to do is BLAST sequence data, right? Here’s a
simple way to set up a stylish little BLAST server that lets you search
your newly assembled sequences.

Installing blastkit

Installing some prerequisites:

pip install pygr
pip install whoosh
pip install git+https://github.com/ctb/pygr-draw.git
pip install git+https://github.com/ged-lab/screed.git
apt-get -y install lighttpd

and configure them:

cd /etc/lighttpd/conf-enabled
ln -fs ../conf-available/10-cgi.conf ./
echo 'cgi.assign = (".cgi" => "")' >> 10-cgi.conf
echo 'index-file.names += ("index.cgi") ' >> 10-cgi.conf

/etc/init.d/lighttpd restart

Next, install BLAST:

cd /root

curl -O ftp://ftp.ncbi.nih.gov/blast/executables/release/2.2.24/blast-2.2.24-x64-linux.tar.gz
tar xzf blast-2.2.24-x64-linux.tar.gz
cp blast-2.2.24/bin/* /usr/local/bin
cp -r blast-2.2.24/data /usr/local/blast-data

And put in blastkit:

cd /root
git clone https://github.com/ctb/blastkit.git -b ec2
cd blastkit/www
ln -fs $PWD /var/www/blastkit

mkdir files
chmod a+rxwt files
chmod +x /root

and run check.py:

cd /root/blastkit
python ./check.py

It should say everything is OK.

Adding the data

If you’ve just finished a transcriptome assembly (3. Running the Actual Assembly) then
you can do this to copy your newly generated assembly into the right place:

cp trinity_out_dir/Trinity.fasta /root/blastkit/db/db.fa

Alternatively, you can grab my version of the assembly (from running this
tutorial):

cd /root/blastkit
curl -O https://s3.amazonaws.com/public.ged.msu.edu/trinity-nematostella-raw.fa.gz
gunzip trinity-nematostella-raw.fa.gz
mv trinity-nematostella-raw.fa db/db.fa

Formatting the database

After you’ve done either of the above, format and install the database
for blastkit:

cd /root/blastkit
formatdb -i db/db.fa -o T -p F
python index-db.py db/db.fa

Done!

Note

You can install any file of DNA sequences you want this way; just copy
it into /root/blastkit/db/db.fa and run the indexing commands, above.

Running blastkit

Figure out what your machine name is
(ec2-???-???-???-???.compute-1.amazonaws.com) and go to:

http://machine-name/blastkit/

Make sure you have enabled port 80 in your security settings on Amazon.

(If you’re using the Nematostella data set, try this sequence:

CAGCCTTTAGAAGGAAACAGTGGCAATATATAATTCTAGATGAAGCTCAGAATATCAAAA
ATTTTAAAAGTCAAAGGTGGCAGTTGCTGTTGAATTTTTCAAGTCAGAGGAGACTTTTGT
TGACTGGAACACCTTTGCAGAACAATTTGATGGAGCTGTGGTCGCTTATGCATTTCCTCA
TGCCATCAATGTTTGCTTCTCATAAAGATTTTAGGGAGTGGTTTTCTAACCCTGTTACAG
GGATGATTGAAGGGAATTCAG

It should match something in your assembly.)

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 5. Building transcript families and annotating the sequences

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	khmer-protocols 0.8.2 documentation

 	The Eel Pond mRNAseq Tutorial

5. Building transcript families and annotating the sequences

Install khmer, screed, and BLAST. (See 1. Quality Trimming and Filtering Your Sequences and
BLASTing your assembled data). I would suggest using an m1.large or
m1.xlarge machine.

You’ll also need to install some eel-pond scripts:

git clone https://github.com/ctb/eel-pond.git /usr/local/share/eel-pond

Copy in your data

You need to get ahold of your assembled transcriptome (from
e.g. 3. Running the Actual Assembly). Put it in /mnt.

For the purposes of your first run through, I suggest just grabbing my copy
of the Nematostella assembly:

cd /mnt
curl -O https://s3.amazonaws.com/public.ged.msu.edu/trinity-nematostella-raw.fa.gz

Run khmer partitioning

Partitioning runs a de Bruijn graph-based clustering algorithm that will
cluster your transcripts by transitive sequence overlap. That is, it will
build transcript families :).

/usr/local/share/khmer/scripts/do-partition.py -x 1e9 -N 4 --threads 4 nema trinity-nematostella-raw.fa.gz

This should take about 15 minutes, and outputs a file ending in ‘.part’
that contains the partition assignments. Now, group and rename the
sequences:

python /usr/local/share/eel-pond/rename-with-partitions.py nema trinity-nematostella-raw.fa.gz.part
mv trinity-nematostella-raw.fa.gz.part.renamed.fasta.gz trinity-nematostella.renamed.fa.gz

Looking at the renamed sequences

Let’s look at the renamed sequences:

gunzip -c trinity-nematostella.renamed.fa.gz | head

You’ll see that each sequence name looks like this:

>nema.id1.tr16001 1_of_1_in_tr16001 len=261 id=1 tr=16001

Some explanation:

	‘nema’ is the prefix that you gave the rename script, above; modify
accordingly for your own organism. It’s best to change it each time
you do an assembly, just to keep things straight.

	
	‘idN’ is the unique ID for this sequence; it will never be repeated in this

	file.

	‘trN’ is the transcript family, which may contain one or more transcripts.

	‘1_of_1_in_tr16001’ tells you that this transcript family has only
one transcript in it (this one!) Other transcript families may
(will) have more.

	‘len’ is the sequence length.

Doing a preliminary annotation against mouse

Now let’s assign putative homology & orthology to these transcripts, by
doing BLASTs & reciprocal best hit analysis. First, uncompress your
transcripts file:

gunzip trinity-nematostella.renamed.fa.gz

Now, grab the latest mouse RefSeq:

curl -O ftp://ftp.ncbi.nih.gov/refseq/M_musculus/mRNA_Prot/mouse.protein.faa.gz
gunzip mouse.protein.faa.gz

Format both as BLAST databases:

formatdb -i mouse.protein.faa -o T -p T
formatdb -i trinity-nematostella.renamed.fa -o T -p F

And, now, run BLAST in both directions. Note, this may take ~24 hours or
longer; you probably want to run it in screen:

blastall -i trinity-nematostella.renamed.fa -d mouse.protein.faa -e 1e-3 -p blastx -o nema.x.mouse -a 8 -v 4 -b 4
blastall -i mouse.protein.faa -d trinity-nematostella.renamed.fa -e 1e-3 -p tblastn -o mouse.x.nema -a 8 -v 4 -b 4

Note

These BLASTs will take a long time, like 24-36 hours. If you want to
work with canned BLASTs, do:

curl -O http://athyra.idyll.org/~t/nema.x.mouse.gz
curl -O http://athyra.idyll.org/~t/mouse.x.nema.gz
gunzip nema.x.mouse.gz
gunzip mouse.x.nema.gz

Assigning names to sequences

Now, calculate putative homology (best BLAST hit) and orthology
(reciprocal best hits):

python /usr/local/share/eel-pond/make-uni-best-hits.py nema.x.mouse nema.x.mouse.homol
python /usr/local/share/eel-pond/make-reciprocal-best-hits.py nema.x.mouse mouse.x.nema nema.x.mouse.ortho

Prepare some of the mouse info:

python /usr/local/share/eel-pond/make-namedb.py mouse.protein.faa mouse.namedb
python -m screed.fadbm mouse.protein.faa

And, finally, annotate the sequences:

python /usr/local/share/eel-pond/annotate-seqs.py trinity-nematostella.renamed.fa nema.x.mouse.ortho nema.x.mouse.homol

This will produce a file ‘trinity-nematostella.renamed.fa.annot’, which
will have sequences that look like this:

>nematostella.id1.tr115222 h=43% => suppressor of tumorigenicity 7 protein isoform 2 [Mus musculus] 1_of_7_in_tr115222 len=1635 id=1 tr=115222 1_of_7_in_tr115222 len=1635 id=1 tr=115222

I suggest renaming this file to ‘nematostella.fa’ and using it for
BLASTs (see BLASTing your assembled data).

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 The Kalamazoo Metagenome Assembly Tutorial

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	khmer-protocols 0.8.2 documentation

The Kalamazoo Metagenome Assembly Tutorial

	author:	Adina Howe and Titus Brown

	1. Quality Trimming and Filtering Your Sequences

	2. Running digital normalization

	3. Partitioning

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 1. Quality Trimming and Filtering Your Sequences

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	khmer-protocols 0.8.2 documentation

 	The Kalamazoo Metagenome Assembly Tutorial

1. Quality Trimming and Filtering Your Sequences

Boot up an m1.xlarge machine from Amazon Web Services; this has about
15 GB of RAM, and 2 CPUs, and will be enough to complete the assembly
of the example data set.

Note

This follows the NGS 2013 tutorial,
Short-read quality evaluation [http://ged.msu.edu/angus/tutorials-2013/short-read-quality-evaluation.html],
but for multiple files.

Note

The end results of this tutorial are available as public snapshot
XXX on EC2/EBS.

Also see: Using ‘screen’.

Install software

Install screed:

pip install git+https://github.com/ged-lab/screed.git

Install the bleeding-edge version of khmer:

cd /usr/local/share
git clone https://github.com/ged-lab/khmer.git -b bleeding-edge
cd khmer
make

echo 'export PYTHONPATH=/usr/local/share/khmer/python' >> ~/.bashrc
source ~/.bashrc

Install Trimmomatic:

cd /root
curl -O http://www.usadellab.org/cms/uploads/supplementary/Trimmomatic/Trimmomatic-0.27.zip
unzip Trimmomatic-0.27.zip
cp Trimmomatic-0.27/trimmomatic-0.27.jar /usr/local/bin

Install libgtextutils and fastx:

cd /root
curl -O http://hannonlab.cshl.edu/fastx_toolkit/libgtextutils-0.6.1.tar.bz2
tar xjf libgtextutils-0.6.1.tar.bz2
cd libgtextutils-0.6.1/
./configure && make && make install

cd /root
curl -O http://hannonlab.cshl.edu/fastx_toolkit/fastx_toolkit-0.0.13.2.tar.bz2
tar xjf fastx_toolkit-0.0.13.2.tar.bz2
cd fastx_toolkit-0.0.13.2/
./configure && make && make install

In each of these cases, we’re downloading the software – you can use
google to figure out what each package is and does if we don’t discuss
it below. We’re then unpacking it, sometimes compiling it (which we
can discuss later), and then installing it for general use.

Create a working directory

Let’s create a place to work:

cd /mnt
mkdir assembly
cd assembly

Link in the data

Trim and quality filter

Grab some Illumina adapters:

curl -O https://s3.amazonaws.com/public.ged.msu.edu/illuminaClipping.fa

Trim the first data set (~20 minutes):

mkdir trim
cd trim

java -jar /usr/local/bin/trimmomatic-0.27.jar PE ../SRR492065_?.fastq.gz s1_pe s1_se s2_pe s2_se ILLUMINACLIP:../illuminaClipping.fa:2:30:10

/usr/local/share/khmer/scripts/interleave-reads.py s?_pe > combined.fq

fastq_quality_filter -Q33 -q 30 -p 50 -i combined.fq > combined-trim.fq
fastq_quality_filter -Q33 -q 30 -p 50 -i s1_se > s1_se.trim
/usr/local/share/khmer/scripts/extract-paired-reads.py combined-trim.fq

gzip -9c combined-trim.fq.pe > ../SRR492065.pe.qc.fq.gz
gzip -9c combined-trim.fq.se s1_se > ../SRR492065.se.qc.fq.gz

cd ../
rm -fr trim

Trim the second data set (~20 minutes):

mkdir trim
cd trim

java -jar /usr/local/bin/trimmomatic-0.27.jar PE ../SRR492066_?.fastq.gz s1_pe s1_se s2_pe s2_se ILLUMINACLIP:../illuminaClipping.fa:2:30:10

/usr/local/share/khmer/scripts/interleave-reads.py s?_pe > combined.fq

fastq_quality_filter -Q33 -q 30 -p 50 -i combined.fq > combined-trim.fq
fastq_quality_filter -Q33 -q 30 -p 50 -i s1_se > s1_se.trim
/usr/local/share/khmer/scripts/extract-paired-reads.py combined-trim.fq

gzip -9c combined-trim.fq.pe > ../SRR492066.pe.qc.fq.gz
gzip -9c combined-trim.fq.se s1_se > ../SRR492066.se.qc.fq.gz

cd ../
rm -fr trim

Done! Now you have four files: SRR492065.pe.qc.fq.gz, SRR492065.se.qc.fq.gz, SRR492066.pe.qc.fq.gz, and SRR492066.se.qc.fq.gz.

The ‘.pe’ files are interleaved paired-end; you can take a look at them like so:

gunzip -c SRR492065.pe.qc.fq.gz | head

The other two are single-ended files, where the reads have been
orphaned because we discarded stuff.

All four files are in FASTQ format.

Next: 2. Running digital normalization

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 2. Running digital normalization

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	khmer-protocols 0.8.2 documentation

 	The Kalamazoo Metagenome Assembly Tutorial

2. Running digital normalization

Note

Make sure you’re running in screen!

Start with the QC’ed files from 1. Quality Trimming and Filtering Your Sequences or copy them into a
working directory.

Run a first round of digital normalization

Normalize everything to a coverage of 20, starting with the (more valuable)
PE reads; keep pairs using ‘-p’:

/usr/local/share/khmer/scripts/normalize-by-median.py -k 20 -C 20 -N 4 -x 5e8 -p --savehash normC20k20.kh *.pe.qc.fq.gz

...and continuing into the (less valuable but maybe still useful) SE reads:

/usr/local/share/khmer/scripts/normalize-by-median.py -C 20 --savehash normC20k20.kh --loadhash normC20k20.kh *.se.qc.fq.gz

This produces a set of ‘.keep’ files, as well as a normC20k20.kh
database file.

Error-trim your data

Use ‘filter-abund’ to trim off any k-mers that are abundance-1 in
high-coverage reads (-V option, for variable coverage):

/usr/local/share/khmer/scripts/filter-abund.py -V normC20k20.kh *.keep

This produces .abundfilt files.

The process of error trimming could have orphaned reads, so split the
PE file into still-interleaved and non-interleaved reads:

for i in *.pe.qc.fq.gz.keep.abundfilt
do
 /usr/local/share/khmer/scripts/extract-paired-reads.py $i
done

This leaves you with PE files (.pe.qc.fq.gz.keep.abundfilt.pe :) and
two sets of SE files (.se.qc.fq.gz.keep.abundfilt and
.pe.qc.fq.gz.keep.abundfilt.se). (Yes, I did indeed devise this naming
scheme. It makes sense. Trust me.)

Normalize down to C=5

Now that we’ve eliminated many more erroneous k-mers, let’s ditch some more
high-coverage data. First, normalize the paired-end reads:

/usr/local/share/khmer/scripts/normalize-by-median.py -C 5 -k 20 -N 4 -x 5e8 --savehash normC5k20.kh -p *.pe.qc.fq.gz.keep.abundfilt.pe

and then do the remaining single-ended reads:

/usr/local/share/khmer/scripts/normalize-by-median.py -C 5 --savehash normC5k20.kh --loadhash normC5k20.kh *.pe.qc.fq.gz.keep.abundfilt.se *.se.qc.fq.gz.keep.abundfilt

Compress and combine the files

Now let’s tidy things up. Here are the paired files (kak =
keep/abundfilt/keep):

gzip -9c SRR492065.pe.qc.fq.gz.keep.abundfilt.pe.keep > SRR492065.pe.kak.qc.fq.gz
gzip -9c SRR492066.pe.qc.fq.gz.keep.abundfilt.pe.keep > SRR492066.pe.kak.qc.fq.gz

and the single-ended files:

gzip -9c SRR492066.pe.qc.fq.gz.keep.abundfilt.se.keep SRR492066.se.qc.fq.gz.keep.abundfilt.keep > SRR492066.se.kak.qc.fq.gz
gzip -9c SRR492065.pe.qc.fq.gz.keep.abundfilt.se.keep SRR492065.se.qc.fq.gz.keep.abundfilt.keep > SRR492065.se.kak.qc.fq.gz

You can now remove all of these various files:

SRR492066.pe.qc.fq.gz.keep
SRR492066.pe.qc.fq.gz.keep.abundfilt
SRR492066.pe.qc.fq.gz.keep.abundfilt.pe
SRR492066.pe.qc.fq.gz.keep.abundfilt.pe.keep
SRR492066.pe.qc.fq.gz.keep.abundfilt.se
SRR492066.pe.qc.fq.gz.keep.abundfilt.se.keep

by typing:

rm *.keep *.abundfilt *.pe *.se

You may also want to remove the k-mer hash tables:

rm *.kh

Read stats

Try running:

/usr/local/share/khmer/sandbox/readstats.py *.kak.qc.fq.gz *.?e.qc.fq.gz

after a long wait, you’ll see

861769600 bp / 8617696 seqs; 100.0 average length -- SRR492065.pe.qc.fq.gz
79586148 bp / 802158 seqs; 99.2 average length -- SRR492065.se.qc.fq.gz
531691400 bp / 5316914 seqs; 100.0 average length -- SRR492066.pe.qc.fq.gz
89903689 bp / 904157 seqs; 99.4 average length -- SRR492066.se.qc.fq.gz

173748898 bp / 1830478 seqs; 94.9 average length -- SRR492065.pe.kak.qc.fq.gz
8825611 bp / 92997 seqs; 94.9 average length -- SRR492065.se.kak.qc.fq.gz
52345833 bp / 550900 seqs; 95.0 average length -- SRR492066.pe.kak.qc.fq.gz
10280721 bp / 105478 seqs; 97.5 average length -- SRR492066.se.kak.qc.fq.gz

This shows you how many sequences were in the original QC files, and
how many are left in the ‘kak’ files. Not bad – considerably more
than 80% of the reads were eliminated in the kak!

Next: 3. Partitioning

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 3. Partitioning

 Navigation

 	
 index

 	
 previous |

 	khmer-protocols 0.8.2 documentation

 	The Kalamazoo Metagenome Assembly Tutorial

3. Partitioning

Note

Make sure you’re running in screen!

Start with the QC’ed files from 2. Running digital normalization or copy them into a
working directory.

Simple partitioning

Partitioning is a rather complex process – nowhere near as nice and
simple as digital normalization. However, we do have a simple script
to run the basic stuff; if this script is too slow, or doesn’t work
well for big chunks of data, we might have remedies. But for the
meantime, try the simple script:

/usr/local/share/khmer/scripts/do-partition.py -k 32 -x 1e9 --threads 4 kak *.kak.qc.fq.gz

This should take about 15 minutes, and will produce ‘.part’ files. These
are now FASTA files that contain partition annotations. For example, check
out:

head SRR492065.pe.kak.qc.fq.gz.part

Extracting the partitions into groups

Generally there are lots of partitions, and for convenience sake we
group them into group files that can be assembled in small chunks.
To do this,

/usr/local/share/khmer/scripts/extract-partitions.py -X 100000 kak *.part

This will leave you with a bunch of ‘kak.group*.fa’, as well as a ‘.dist’
file containing the distribution of partition sizes (how many sequences are
in a given partition).

Here, the ‘-X’ sets the number of sequences stuck into a group file.
By default the -X parameter is 1 million, which would put all of the
sequences into a single file for this data set.

Occasionally (OK, rather frequently) you’ll find that almost all of
your sequences coalesce into one partition, which we unaffectionately
call the ‘lump’. There are many possible reasons for this, and we
have a series of increasingly large hammers that can be used on the
lump.

For now, simply observe that:

tail kak.dist

reports that about 2/3 of the sequences are in a single partition:

1674746 1 112164 2539252

Reinflating partitions (optional)

At this point it’s worth noting that the partitions are normalized,
that is, diginormed. That makes it hard to use them for abundance
calculations, and some assemblers prefer to have the original
abundances in there.

So, ran you recover the abundances? Of course you can! However, you
do have to combine all of the raw (unpartitioned) reads into a single
file, because the script to reinflate the partitions takes only single
file. Sorry :(.

gunzip -c /class/cbrown/data/SRR49206?.?e.qc.fq.gz > all.fq
python /usr/local/share/khmer/sandbox/sweep-reads3.py -x 1e8 kak.group*.fa all.fq

Next: 4. Assembling

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Index

 Navigation

 	
 index

 	khmer-protocols 0.8.2 documentation

Index

 Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	v0.8.2

 	v0.8-1

_images/CreateVolumeWindow.png
Create Volume

size: 20 (G813

_static/minus.png

mrnaseq/coral.html

 Navigation

 		
 index

 		khmer-protocols 0.8.2 documentation »

 java -jar /usr/local/bin/trimmomatic-0.27.jar PE P_astreoides_larva_GCCAAT_L005_R?_001.fastq.gz s1_pe s1_se s2_pe s2_se ILLUMINACLIP:../illuminaClipping.fa:2:30:10

mkdir larva
root@ip-10-40-10-213:/mnt/two# mv s?_?e larva/
root@ip-10-40-10-213:/mnt/two# java -jar /usr/local/bin/trimmomatic-0.27.jar PE P_astreoides_settled*_L005_R?_001.fastq.gz s1_pe s1_se s2_pe s2_se ILLUMINACLIP:../illuminaClipping.fa:2:30:10

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

 		v0.8.2

 		v0.8-1

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 		
 Go to

 <no title>
 on GitHub.

 		
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 		
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 		
 Then click Send a pull request.

 		
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

_images/CreateVolume.png
Amazon

Amazon EC2 e H Amazon RDS

Amazon Elastic
MapReduce

Navigation

Region: = UsEast v 2 [Bsioutic
> EC2 Dashboard K
INSTANCES

You do not have any volumes.
> Instances Click the Create Volume button to initialize an external storage device, a
> Spot Requests click Help for further informatiga ijng and mounting your devic
MAGES
> AMIs

> Bundle Tasks

ELASTIC BLOCK STORE
> Volumes

> Snapshots

_static/comment-bright.png

LICENSE.html

 Navigation

 		
 index

 		khmer-protocols 0.8.2 documentation »

License

This documentation and all textual/graphic site content is licensed
under the Creative Commons - 0 License (CC0) [http://creativecommons.org/publicdomain/zero/1.0/]. Please feel
free to copy, modify, distribute and perform the work, even for
commercial purposes, all without asking permission.

You can find the source code for this material under git version
control on github at https://github.com/ged-lab/khmer-protocols/. Please fork
at your own leisure :).

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

 		v0.8.2

 		v0.8-1

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 		
 Go to

 License
 on GitHub.

 		
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 		
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 		
 Then click Send a pull request.

 		
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

search.html

 Navigation

 		
 index

 		khmer-protocols 0.8.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

 		v0.8.2

 		v0.8-1

_static/comment-close.png

mrnaseq/saving-data-persistently.html

 Navigation

 		
 index

 		khmer-protocols 0.8.2 documentation »

Storing data persistently with Amazon

		Author:		Rosangela Canino-Koning

		Date:		June 7, 2010

If you want to save your data across instances – that is, if you want
to have persistent data – Amazon can do that for you, too. You need
to use the Amazon Elastic Block Storage service, which creates a virtual
hard drive that you can (virtually) attach to your EC2 instance.

Note that EBS charges you based partly on how much disk space you have
allocated per month, rather than on connectivity or anything else, so even if
you don’t have an EC2 machine running, you’ll be paying Amazon for data
storage.

You can read more about EBS here [http://aws.amazon.com/ebs/].

Prerequisites

This tutorial assumes you’ve already set up an account on Amazon Web
Services, and that you’ve completed the EC2 tutorial to set up an
Amazon instance.

Ask Amazon to create a new Elastic Block Storage Volume for you

At the AWS Management Console, on the left menu bar, click “Volumes”.

[image: ../_images/ClickVolumes.png]
Click “Create Volume”.

[image: ../_images/CreateVolume.png]
Enter the desired size, and select the zone in which your instance is
running. The volume and instance must be in the same zone. Otherwise,
the volume cannot be attached to your instance.

Then click “Create”.

[image: ../_images/CreateVolumeWindow.png]
Wait for your volume to finish being created, then click “Attach Volume”.

[image: ../_images/AttachVolume.png]
Select the desired running instance. It will ask you for a device name
to attach; this should be ‘/dev/sdf’, ‘/dev/sdg’, etc. You can name it
anything up to at least ‘i’ or ‘j’. Remember this for later – it’s
how the computer will know which disk to store data on!

Click “Attach”.

[image: ../_images/AttachVolumeWindow.png]
When attachment is complete, connect to your instances via SSH.

If the volume is newly created, you must format the volume.
WARNING: ONLY DO THIS ONCE, WHEN YOU FIRST CREATE THE VOLUME. OTHERWISE, YOU WILL LOSE ALL YOUR
DATA.

mkfs -t ext2 /dev/xvdf

(If you used ‘sdg’ above, make it ‘xvdg’ etc. I know it’s confusing.)

It will ask you if you want to use the entire device – say “y” for “yes.

Then, mount the volume. You’ll do this every time you attach the volume to an instance:

mkdir /data
mount /dev/xvdf /data

Your drive is now ready to use – it will be available under /data.
Files copied into that directory or directories underneath it will
be stored on your EBS volume.

Shutting down your instance

Any volumes you have attached will automatically detach when you shut
down the instance. You can also stop all processes that are using the
volume, change out of the directory, and type

cd
umount /data

and then detach the volume via the AWS Web site.

Snapshotting your volume

Snapshots are backups of your volume that you can share with other people.
Snapshots are much more reliable long-term than volumes are, and you can use
them as a basis for creating a new volume (in which case the new volume will
start out containing all the data in the snapshot). So, if you upload some
raw data and want to work with it over a few weeks, we suggest:

		create a volume and load the data onto the volume

		snapshot the original volume

		make a new volume from the snapshot, and delete the original volume

You’ll only be charged money for storing the snapshot and any differences
from the snapshot on the volumes based on that snapshot.

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

 		v0.8.2

 		v0.8-1

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 		
 Go to

 Storing data persistently with Amazon
 on GitHub.

 		
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 		
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 		
 Then click Send a pull request.

 		
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

_static/up-pressed.png

mrnaseq/de-novo-assembly.html

 Navigation

 		
 index

 		khmer-protocols 0.8.2 documentation »

Doing a small de novo mRNAseq assembly with Trinity

Installing Trinity

To install Trinity:

cd /root

curl -L http://sourceforge.net/projects/trinityrnaseq/files/latest/download?source=files > trinity.tar.gz

tar xzf trinity.tar.gz
cd trinityrnaseq_r2013-02-25/
export FORCE_UNSAFE_CONFIGURE=1
make

Install ctb Python packages

Install screed and khmer:

cd /usr/local/share
git clone https://github.com/ged-lab/screed.git
cd screed
python setup.py install

cd /usr/local/share
git clone https://github.com/ged-lab/khmer.git
cd khmer
make

echo export PYTHONPATH=/usr/local/share/khmer/python >> ~/.bashrc
source ~/.bashrc

Installing blastkit

Installing some prerequisites:

pip install pygr
apt-get -y install lighttpd

and configure them:

cd /etc/lighttpd/conf-enabled
ln -fs ../conf-available/10-cgi.conf ./
echo 'cgi.assign = (".cgi" => "")' >> 10-cgi.conf
echo 'index-file.names += ("index.cgi") ' >> 10-cgi.conf

/etc/init.d/lighttpd restart

Next, install BLAST:

cd /root

curl -O ftp://ftp.ncbi.nih.gov/blast/executables/release/2.2.24/blast-2.2.24-x64-linux.tar.gz
tar xzf blast-2.2.24-x64-linux.tar.gz
cp blast-2.2.24/bin/* /usr/local/bin
cp -r blast-2.2.24/data /usr/local/blast-data

And put in blastkit:

cd /root
git clone https://github.com/ctb/blastkit.git -b ec2
cd blastkit/www
ln -fs $PWD /var/www/blastkit

mkdir files
chmod a+rxwt files
chmod +x /root

Install bowtie

Download and install bowtie:

cd /root
curl -O -L http://sourceforge.net/projects/bowtie-bio/files/bowtie/0.12.7/bowtie-0.12.7-linux-x86_64.zip
unzip bowtie-0.12.7-linux-x86_64.zip
cd bowtie-0.12.7
cp bowtie bowtie-build bowtie-inspect /usr/local/bin

Download and preparing the test data

Grab the coral data:

cd /mnt
curl -O https://s3.amazonaws.com/public.ged.msu.edu/coral-settled-400k-pe.fq.gz

Break the interleaved FASTQ data into left and right files for Trinity:

python /usr/local/share/khmer/sandbox/split-pe.py coral-settled-400k-pe.fq.gz

Assemble!

/root/trinityrnaseq_r2013-02-25/Trinity.pl --left coral-settled-400k-pe.fq.gz.1 --right coral-settled-400k-pe.fq.gz.2 --seqType fq -JM 5G

Note that this last bit (5G) is the maximum amount of memory to use. You
can increase (or decrease) it based on what machine you rented.

Are you impatient??

Note: I have a little test database that you can install below INSTEAD of
doing the assembly:

mkdir /root/blastkit/db
curl https://s3.amazonaws.com/public.ged.msu.edu/coral-mini-assembly.fa.gz | gunzip > /root/blastkit/db/db.fa

Set up a BLAST database

Assuming everything is successful, let’s make this BLASTable.

Copy the assembly:

mkdir /root/blastkit/db
cp trinity_out_dir/Trinity.fasta /root/blastkit/db/db.fa

Format the database for BLASTing:

cd /root/blastkit/db
formatdb -i db.fa -o T -p F

Format the database for sequence retrieval:

python ../index-db.py db.fa

Now, go to ‘http://<your EC2 hostname>/blastkit/’ and you should have a simple
BLAST interface. If you’re using the coral dataset, above, try the following
query:

MSRADPGKNSEPSESKMSLELRPTAPSDLGRSNEAFQDEDLERQNTPGNSTVRNRVVQSGEQGHAKQDDRQITIEQEPLG
NKEDPEDDSEDEHQKGFLERKYDTICEFCRKHRVVLRSTIWAVLLTGFLALVIAACAINFHRALPLFVITLVTIFFVIWD
HLMAKYEQRIDDFLSPGRRLLDRHWFWLKWVVWSSLILAIILWLSLDTAKLGQQNLVSFGGLIMYLILLFLFSKHPTRVY
WRPVFWGIGLQFLLGLLILRTRPGFVAFDWMGRQVQTFLGYTDTGARFVFGEKYTDHFFAFKILPIVVFFSTVMSMLYYL
GLMQWIIRKVGWLMLVTMGSSPIESVVAAGNIFIGQTESPLLVQPYLPHVTKSELHTIMTAGFATIAGSVLGAYISFGVS
STHLLTASVMSAPAALAVAKLFWPETEKPKITLKSAMKMENGDSRNLLEAASQGASSSIPLVANIAANLIAFLALLSFVN
SALSWFGSMFNYPELSFELICSYIFMPFSFMMGVDWQDSFMVAKLIGYKTFFNEFVAYDHLSKLINLRKAAGPKFVNGVQ
QYMSIRSETIATYALCGFANFGSLGIVIGGLTSIAPSRKRDIASGAMRALIAGTIACFMTACIAGILSDTPVDINCHHVL
ENGRVLSNTTEVVSCCQNLFNSTVAKGPNDVVPGGNFSLYALKSCCNLLKPPTLNCNWIPNKL

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

 		v0.8.2

 		v0.8-1

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 		
 Go to

 Doing a small de novo mRNAseq assembly with Trinity
 on GitHub.

 		
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 		
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 		
 Then click Send a pull request.

 		
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

_static/up.png

mrnaseq/4-diff-expr.html

 Navigation

 		
 index

 		khmer-protocols 0.8.2 documentation »

 curl -O http://athyra.idyll.org/~t/petMar_lamp3.longest.fasta.gz
gunzip petMar_lamp3.longest.fasta.gz

rsem-prepare-reference petMar_lamp3.longest.fasta lamp3

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

 		v0.8.2

 		v0.8-1

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 		
 Go to

 <no title>
 on GitHub.

 		
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 		
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 		
 Then click Send a pull request.

 		
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

_static/down.png

_static/plus.png

_static/comment.png

_images/AttachVolumeWindow.png
Attach Volume

vol-7737a21e in us-east-1b

in us-east-1b

Windows Devices: xvdf through xvdp
Linux Devices: /dev/sdf through /dev/sdp.

_images/AttachVolume.png
Amazon Elastic

Amazon
MapReduce

CloudFront

[smason s

[l croeo snapane | |

Viewing: [Al Volumes

Volume ID

Created Zone

& 5 vos13dates

2010-06-08 14:53 EST us-ea

_static/ajax-loader.gif

metagenomics/5-mapping-and-quantitation.html

 Navigation

 		
 index

 		khmer-protocols 0.8.2 documentation »

6. Mapping and abundance quantitation

Let’s do some simple mapping to do abundance estimation in the group 5
assembly.

Setup

First, move to a new directory:

cd
mkdir mapping
cd mapping

cp /class/cbrown/data/group5-assembly.fa.gz .

gunzip group5-assembly.fa

Bowtie mapping

bowtie [http://bowtie-bio.sourceforge.net/index.shtml] is a commonly
used mapping tool.

We need to build a bowtie reference:

bowtie-build group5-assembly.fa group5

and then let’s map a subset of the reads (make it the single-ended ones,
just to keep things fast):

gunzip -c ~/data/SRR492065.se.qc.fq.gz | \
 bowtie -q group5 - > SRR492065.x.group5.map
gunzip -c ~/data/SRR492066.se.qc.fq.gz | \
 bowtie -q group5 - > SRR492066.x.group5.map

Here you should see the following output for the first:

reads processed: 802158
reads with at least one reported alignment: 63226 (7.88%)
reads that failed to align: 738932 (92.12%)
Reported 63226 alignments to 1 output stream(s)

and the second:

reads processed: 904157
reads with at least one reported alignment: 39572 (4.38%)
reads that failed to align: 864585 (95.62%)
Reported 39572 alignments to 1 output stream(s)

At the moment, there seems to be no good way to do automated differential
analysis of two samples, so I’ll content myself with showing you how to
annotate the assembled sequences with the mapping abundances.

To do this, we will need to make two copies of the annotated assembly
– one annotated with the first (SRR492065) and the other with the
second (SRR492066) abundances.

python /class/stamps-software/share/khmer/sandbox/make-coverage.py group5-assembly.fa SRR492065.x.group5.map
mv group5-assembly.fa.cov group5.SRR492065.fa

python /class/stamps-software/share/khmer/sandbox/make-coverage.py group5-assembly.fa SRR492066.x.group5.map
mv group5-assembly.fa.cov group5.SRR492066.fa

What you should see now is that there’s a [cov] annotation for each
sequence in every file –

head -1 group5.SRR49206?.fa

and you should see something like this –

==> group5.SRR492065.fa <==
>NODE_1_length_3642_cov_7.200439[cov=1]

==> group5.SRR492066.fa <==
>NODE_1_length_3642_cov_7.200439[cov=2]

This format can be uploaded directly to MG-RAST as an
abundance-annotated assembly, although there’s no good way to do
comparative analysis yet, it seems.

More generally, I would suggest looking into things like RSEM [http://deweylab.biostat.wisc.edu/rsem/], DEseq [http://www-huber.embl.de/users/anders/DESeq/], or other
differential expression packages for mRNAseq.

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

 		v0.8.2

 		v0.8-1

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 		
 Go to

 6. Mapping and abundance quantitation
 on GitHub.

 		
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 		
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 		
 Then click Send a pull request.

 		
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

mrnaseq/using-screen.html

 Navigation

 		
 index

 		khmer-protocols 0.8.2 documentation »

Using ‘screen’

		Author:		Rosangela Canino-Koning

		Date:		June 9, 2011

		Last Updated:		July 24, 2013

Persistent Sessions

Screen is a window manager for terminal sessions. Screen allows you to
run a terminal session, and then disconnect from the computer, and be
able to return to the session at a later date.

To start screen, you run the screen command with a few options:

screen -S <sessionname>

Where sessionname is any meaningful or descriptive title for your screen
session. This creates an independent terminal session, and connects you to it.

Most commands within screen are composed of a prefix key-stroke,
followed by a command character. By default, the prefix is Ctrl-A. In
this tutorial Ctrl-A will represented by “C-a”.

Let’s try a few screen commands.

To disconnect from the session (while leaving it running!), type:

C-a d

This session will remain active until you choose to end it, or you
reboot the computer. You can at this point safely disconnect from SSH,
and the screen session will continue to run.

To reconnect to the session, make sure you’re logged into the UNIX machine,
and type:

screen -r

To illustrate managing multiple screen session, disconnect from the current
session, and create a new session with a second name.:

C-a d
screen -S <secondsessionname>

Disconnect from the second session, and then list the available sessions:

C-a d
screen -list

Note, typing screen -r with multiple active screen sessions will display
the same information.

To reconnect to the first session, include its name after the -r.:

screen -r <sessionname>

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

 		v0.8.2

 		v0.8-1

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 		
 Go to

 Using ‘screen’
 on GitHub.

 		
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 		
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 		
 Then click Send a pull request.

 		
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

_images/ClickVolumes.png
Amazon EC2 ‘

Amazon Elastic Amazon
MapReduce

e, | [maron s |

Region: | usEast +

% crstooumo | > 3 8 svowise

> EC2 Dashboard

INSTANCES
> Instances
> Spot Requests.

IMAGES
> AMIs
> Bundle Tasks

BLOCK STORE

Viewing: Al Volumes 2] K

You do not have any volumes.
Click the Create Volume button to initialize an external storage device, a
click Help for further information on formatting and mounting your devic

%> Create Volume

_static/file.png

CHECKLIST.html

 Navigation

 		
 index

 		khmer-protocols 0.8.2 documentation »

 For a new release,

		update versions in docs to vX.Y

		tag new release (vX.Y)

		push tag to ged-lab/khmer-protocols

		update readthedocs to point appropriately.

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

 		v0.8.2

 		v0.8-1

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 		
 Go to

 <no title>
 on GitHub.

 		
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 		
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 		
 Then click Send a pull request.

 		
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

mrnaseq/rsem.html

 Navigation

 		
 index

 		khmer-protocols 0.8.2 documentation »

Expression analysis

Installing rsem

We’ll be using the RSEM package [http://deweylab.biostat.wisc.edu/rsem/]
to do some expression analysis. To install it:

cd /root

curl -O http://deweylab.biostat.wisc.edu/rsem/src/rsem-1.2.5.tar.gz

tar xzvf rsem-1.2.5.tar.gz
cd rsem-1.2.5
make

And now add this directory into your PATH, which is where Unix looks for
things to run:

echo 'export PATH=$PATH:/root/rsem-1.2.5' >> /root/.bashrc
source /root/.bashrc

Installing bowtie

If you didn’t install bowtie on this machine already (e.g. as part of
Doing a small de novo mRNAseq assembly with Trinity), RSEM needs it; do:

cd /root
curl -O -L http://sourceforge.net/projects/bowtie-bio/files/bowtie/0.12.7/bowtie-0.12.7-linux-x86_64.zip
unzip bowtie-0.12.7-linux-x86_64.zip
cd bowtie-0.12.7
cp bowtie bowtie-build bowtie-inspect /usr/local/bin

Running rsem

Go to a working directory on /mnt:

cd /mnt
mkdir rsem
cd rsem

Now, grab the reference transcriptome:

curl https://s3.amazonaws.com/public.ged.msu.edu/coral-mini-assembly.fa.gz | gunzip > coral.fa

and some reads:

curl -O http://athyra.idyll.org/~t/larva-ct-800k.fq.gz
curl -O http://athyra.idyll.org/~t/settled-ct-800k.fq.gz

You’ll need to uncompress the reads:

gunzip *.gz

Now, prepare the reference for RSEM:

rsem-prepare-reference coral.fa coral

Here, ‘coral.fa’ can be one of several files (comma-separated) in case
you have multiple different reference data sets. In this case it’s
the transcriptome you generated, but there are lots of options (see
the docs for rsem-prepare-reference [http://deweylab.biostat.wisc.edu/rsem/rsem-prepare-reference.html]).

And, finally, calculate the expression levels for the ‘settled’ and ‘larva’
data sets:

rsem-calculate-expression settled-ct-800k.fq coral settled
rsem-calculate-expression larva-ct-800k.fq coral larva

(See the rsem-calculate-expression docs [http://deweylab.biostat.wisc.edu/rsem/rsem-calculate-expression.html] for more info.)

This outputs a couple files; the two most interesting, for now, are
‘larva.genes.results’ and ‘settled.genes.results’. These contain the
following data:

head larva.genes.results

should show you

gene_id transcript_id(s) length effective_length expected_count TPM FPKM
comp0_c0_seq1 comp0_c0_seq1 291.00 291.00 3.00 102.12 164.47
...

If you’ve installed Dropbox (see
../tutorials-2013/installing-dropbox), you can now copy the
files to Dropbox:

cp larva.genes.results settled.genes.results ~/Dropbox/

and you can open them directly in Excel as tab-delimited files.

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

 		v0.8.2

 		v0.8-1

 Edit this document!

 This file can be edited directly through the Web. Anyone can
 update and fix errors in this document with few clicks --
 no downloads needed.

 		
 Go to

 Expression analysis
 on GitHub.

 		
 Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)

 		
 Fill in the Commit message text box at the bottom of the page describing why
 you made the changes. Press the Propose file change button next to it when done.

 		
 Then click Send a pull request.

 		
 Your changes are now queued for review under the project's Pull requests tab on GitHub!

 For an introduction to the documentation format please see the reST primer.

_static/down-pressed.png

metagenomics/4-assemble.html

 Navigation

 		
 index

 		khmer-protocols 0.8.2 documentation »

4. Assembling

At last! All that filtering and diginorming is done, and we can get
down to the serious business of assembling. Huzzah!

Install some assemblers

First, let’s install Velvet:

cd /root
curl -O http://www.ebi.ac.uk/~zerbino/velvet/velvet_1.2.10.tgz
tar xzf velvet_1.2.10.tgz
cd velvet_1.2.10
make MAXKMERLENGTH=51
cp velvet? /usr/local/bin

And also IDBA:

cd /root
curl -O http://hku-idba.googlecode.com/files/idba-1.1.1.tar.gz
tar xzf idba-1.1.1.tar.gz
cd idba-1.1.1
./configure && make

Splitting out PE and SE reads

Let’s assemble just one group, for now – group 5 should be nice and
small. Generally assemblers will want interleaved reads to be
distinguished from orphaned reads, so let’s split ‘em out:

mkdir group5
cd group5
python /usr/local/share/khmer/scripts/extract-paired-reads.py ../kak.group0005.fa.gz
python /usr/local/share/khmer/scripts/extract-paired-reads.py ../kak.group0005.fa.gz.sweep3
mv kak.group0005.fa.gz.sweep3.pe kak.group5.nodn.pe
mv kak.group0005.fa.gz.sweep3.se kak.group5.nodn.se

Using Velvet

I personally really like the Velvet assembler, since it yields pretty
good results in a wide variety of situations. It’s also rather fast.
The downside is that you have to specify a ‘k’ parameter, which gets
annoying because it gives you different results (see presentation).

So, let’s just assemble across a lot of k’s.

for k in {21..43..2}
do
 velveth dn.$k $k -fasta -shortPaired kak.group0005.fa.gz.pe -short kak.group0005.fa.gz.se
 velvetg dn.$k -exp_cov auto
done

for k in {21..43..2}
do
 velveth nodn.$k $k -fasta -shortPaired kak.group5.nodn.pe -short kak.group5.nodn.se
 velvetg nodn.$k -exp_cov auto
done

Using IDBA

I’ve heard good things about IDBA. Let’s give it a try:

idba_ud --pre_correction -r kak.group0005.fa.gz.pe -o idba.dn.d

idba_ud --pre_correction -r kak.group5.nodn.pe -o idba.nodn.d/

Getting stats for the assemblies

To get some basic stats for the assemblies, run:

python /usr/local/share/khmer/sandbox/assemstats3.py 500 *.??/contigs.fa idba.*.d/scaffold.fa

This will yield something like:

