

 Navigation

 	
 index

 	khmer-protocols 0.8.3 documentation

khmer protocols

	version:	0.8.3

This is a set of protocols for doing genomic data analysis – specifically,
de novo mRNAseq assembly and de novo metagenome assembly – in the cloud.

The latest released version of these protocols is v0.8.3; please
follow the instructions at the following URL, and use this URL in
citations and discussions:

https://khmer-protocols.readthedocs.org/en/v0.8.3/

(The URL https://khmer-protocols.readthedocs.org/ will always go to
the latest released version.)

Protocols:

mRNAseq assembly: the Eel Pond Protocol

The Eel Pond mRNAseq Protocol

This is a lightweight protocol for assembling up to a few hundred
million mRNAseq reads, annotating the resulting assembly, and doing
differential expression with RSEM.

Metagenome assembly: the Kalamazoo Protocol

The Kalamazoo Metagenome Assembly protocol

This is a protocol for assembling low- and medium-diversity metagenomes.
Marine sediment and soil data sets may not be assemblable in the cloud
just yet.

Additional information

Need help? Either post comments on the bottom of each page, OR
sign up for the mailing list [http://lists.idyll.org/listinfo/protocols].

Have you used these protocols in a scientific publication? We’ll have
citation instructions up soon.

Funding

khmer-protocols development has largely been supported by AFRI
Competitive Grant no. 2010-65205-20361 [http://ged.msu.edu/downloads/2009-usda-vertex.pdf] from the USDA
NIFA, and Award Number R25HG006243 [http://ged.msu.edu/downloads/2010-ngs-course-nih-r25.pdf] from the
National Institutes of Health, both to C. Titus Brown.
We now have continuing support from
the National Human Genome Research
Institute of the National Institutes of Health under Award Number
R01HG007513 [http://ged.msu.edu/downloads/2012-bigdata-nsf.pdf],
also to C. Titus Brown.

CTB’s work on the Eel Pond mRNAseq tutorial was enabled by his 2013 summer
research work at the Marine Biological Laboratory [http://www.mbl.edu], funded by the Burr and Susie Steinbach Award
and the Laura and Arthur Colwin Endowed Summer Research Fellowship
Fund

TODO:

	remove/transition stuff from the angus site.

	add sfg/stanford: http://sfg.stanford.edu/

	send to biostar-ninjas

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Index

 Navigation

 	
 index

 	khmer-protocols 0.8.3 documentation

Index

 Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.2.2.

metagenomics/installing-blastkit.html

 Navigation

 		
 index

 		khmer-protocols 0.8.3 documentation »

BLASTing your assembled data

One thing everyone wants to do is BLAST sequence data, right? Here’s a
simple way to set up a stylish little BLAST server that lets you search
your newly assembled sequences.

Installing blastkit

Installing some prerequisites:

pip install pygr
pip install whoosh
pip install git+https://github.com/ctb/pygr-draw.git
pip install git+https://github.com/ged-lab/screed.git
apt-get -y install lighttpd

and configure them:

cd /etc/lighttpd/conf-enabled
ln -fs ../conf-available/10-cgi.conf ./
echo 'cgi.assign = (".cgi" => "")' >> 10-cgi.conf
echo 'index-file.names += ("index.cgi") ' >> 10-cgi.conf

/etc/init.d/lighttpd restart

Next, install BLAST:

cd /root

curl -O ftp://ftp.ncbi.nih.gov/blast/executables/release/2.2.24/blast-2.2.24-x64-linux.tar.gz
tar xzf blast-2.2.24-x64-linux.tar.gz
cp blast-2.2.24/bin/* /usr/local/bin
cp -r blast-2.2.24/data /usr/local/blast-data

And put in blastkit:

cd /root
git clone https://github.com/ctb/blastkit.git -b ec2
cd blastkit/www
ln -fs $PWD /var/www/blastkit

mkdir files
chmod a+rxwt files
chmod +x /root

and run check.py:

cd /root/blastkit
python ./check.py

It should say everything is OK.

Adding the data

If you’ve just finished annotating a metagenome assembly
(Annotating your metagenome with Prokka) then
you can do this to copy your newly generated assembly into the right place:

cp /mnt/annot/metag/testasm.faa /root/blastkit/db/db-prot.fa

Alternatively, you can grab our version of the assembly (from running this
tutorial):

cd /root/blastkit
curl -O http://athyra.idyll.org/~t/testasm.faa
mv testasm.faa db/db-prot.fa

Formatting the database

After you’ve done either of the above, format and install the database
for blastkit:

cd /root/blastkit
formatdb -i db/db-prot.fa -o T -p T
python index-db.py db/db-prot.fa

Done!

Note

You can install any file of protein sequences you want this way; just copy
it into /root/blastkit/db/db-prot.fa and run the indexing commands, above.

Running blastkit

Figure out what your machine name is
(ec2-???-???-???-???.compute-1.amazonaws.com) and go to:

http://machine-name/blastkit/

Make sure you have enabled port 80 in your security settings on Amazon.

(If you’re using the human data set, try this sequence:

MYLYTSYGTYQFLNQIKLNHQERNLFQFSTNDSSIILEESEGKSILKHPSSYQVIDSTGE
FNEHHFYSAIFVPTSEDHRQQLEKKLLHVDVPLSNFGGFKSYRLLKPTEGSTYKIYFGFA
NRTAYEDFKASDIFNENFSKDALSQYFGASGQHSSYFERYLYPIEDH

It should match something in your assembly.)

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.2.2.

metagenomics/1-quality.html

 Navigation

 		
 index

 		khmer-protocols 0.8.3 documentation »

1. Quality Trimming and Filtering Your Sequences

Boot up an m1.xlarge machine from Amazon Web Services; this has about
15 GB of RAM, and 2 CPUs, and will be enough to complete the assembly
of the example data set.

Note

This follows the NGS 2013 tutorial,
Short-read quality evaluation [http://ged.msu.edu/angus/tutorials-2013/short-read-quality-evaluation.html],
but for multiple files.

Note

The raw data for this tutorial is available as public snapshot
snap-05633504 on EC2/EBS. The end results of this tutorial are
available as public snapshot snap-85653384 on EC2/EBS.

Note

Some of these commands may take a very long time. Please see
Using ‘screen’.

Install software

Install screed [http://screed.readthedocs.org/]:

pip install screed

Install khmer [http://khmer.readthedocs.org/]:

cd /usr/local/share
git clone https://github.com/ged-lab/khmer.git
cd khmer
git checkout protocols-v0.8.3
make

echo 'export PYTHONPATH=/usr/local/share/khmer/python:$PYTHONPATH' >> ~/.bashrc
source ~/.bashrc

Install Trimmomatic [http://www.usadellab.org/cms/?page=trimmomatic]:

cd /root
curl -O http://www.usadellab.org/cms/uploads/supplementary/Trimmomatic/Trimmomatic-0.30.zip
unzip Trimmomatic-0.30.zip
cd Trimmomatic-0.30/
cp trimmomatic-0.30.jar /usr/local/bin
cp -r adapters /usr/local/share/adapters

Install libgtextutils and fastx [http://hannonlab.cshl.edu/fastx_toolkit/]:

cd /root
curl -O http://hannonlab.cshl.edu/fastx_toolkit/libgtextutils-0.6.1.tar.bz2
tar xjf libgtextutils-0.6.1.tar.bz2
cd libgtextutils-0.6.1/
./configure && make && make install

cd /root
curl -O http://hannonlab.cshl.edu/fastx_toolkit/fastx_toolkit-0.0.13.2.tar.bz2
tar xjf fastx_toolkit-0.0.13.2.tar.bz2
cd fastx_toolkit-0.0.13.2/
./configure && make && make install

In each of these cases, we’re downloading the software – you can use
google to figure out what each package is and does if we don’t discuss
it below. We’re then unpacking it, sometimes compiling it (which we
can discuss later), and then installing it for general use.

Create a working directory

Let’s create a place to work:

cd /mnt
mkdir assembly
cd assembly

Link in the data

The tutorial data is from Sharon et al. 2013 [http://www.ncbi.nlm.nih.gov/pubmed/22936250]; it’s two data points
from an infant gut sample.

If you want to play along with this data (guaranteed to work – highly
advised on a first runthrough!), please see
0. Downloading and Saving Your Initial Data and follow the instructions to
(a) create a volume from snapshot snap-05633504 and (b) mount it as
/data.

Once you’ve done that, check that ‘ls /data’ shows exactly four FASTQ
files, and then type:

ln -fs /data/SRR49206?_?.fastq.gz .

This links the data into the /mnt/assembly directory.

Trim and quality filter

Trim the first data set (~20 minutes):

mkdir trim
cd trim

java -jar /usr/local/bin/trimmomatic-0.30.jar PE ../SRR492065_?.fastq.gz s1_pe s1_se s2_pe s2_se ILLUMINACLIP:/usr/local/share/adapters/TruSeq3-PE.fa:2:30:10

/usr/local/share/khmer/scripts/interleave-reads.py s?_pe > combined.fq

fastq_quality_filter -Q33 -q 30 -p 50 -i combined.fq > combined-trim.fq
fastq_quality_filter -Q33 -q 30 -p 50 -i s1_se > s1_se.trim
fastq_quality_filter -Q33 -q 30 -p 50 -i s2_se > s2_se.trim
/usr/local/share/khmer/scripts/extract-paired-reads.py combined-trim.fq

gzip -9c combined-trim.fq.pe > ../SRR492065.pe.qc.fq.gz
gzip -9c combined-trim.fq.se s1_se.trim s2_se.trim > ../SRR492065.se.qc.fq.gz

cd ../
rm -fr trim

Trim the second data set (~20 minutes):

mkdir trim
cd trim

java -jar /usr/local/bin/trimmomatic-0.30.jar PE ../SRR492066_?.fastq.gz s1_pe s1_se s2_pe s2_se ILLUMINACLIP:/usr/local/share/adapters/TruSeq3-PE.fa:2:30:10

/usr/local/share/khmer/scripts/interleave-reads.py s?_pe > combined.fq

fastq_quality_filter -Q33 -q 30 -p 50 -i combined.fq > combined-trim.fq
fastq_quality_filter -Q33 -q 30 -p 50 -i s1_se > s1_se.trim
fastq_quality_filter -Q33 -q 30 -p 50 -i s2_se > s2_se.trim
/usr/local/share/khmer/scripts/extract-paired-reads.py combined-trim.fq

gzip -9c combined-trim.fq.pe > ../SRR492066.pe.qc.fq.gz
gzip -9c combined-trim.fq.se s1_se.trim s2_se.trim > ../SRR492066.se.qc.fq.gz

cd ../
rm -fr trim

Done! Now you have four files: SRR492065.pe.qc.fq.gz, SRR492065.se.qc.fq.gz, SRR492066.pe.qc.fq.gz, and SRR492066.se.qc.fq.gz.

The ‘.pe’ files are interleaved paired-end; you can take a look at them like so:

gunzip -c SRR492065.pe.qc.fq.gz | head

The other two are single-ended files, where the reads have been
orphaned because we discarded stuff.

All four files are in FASTQ format.

Next: 2. Running digital normalization

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.2.2.

metagenomics/5-mapping-and-quantitation.html

 Navigation

 		
 index

 		khmer-protocols 0.8.3 documentation »

5. Mapping and abundance quantitation

Note

You can start from this point by taking the following files from
the data on snapshot snap-8f89b092:

SRR492065.pe.qc.fq.gz
SRR492066.pe.qc.fq.gz
final-assembly.fa

Just do:

mkdir /mnt/assembly
cd /mnt/assembly
cp /data/SRR492065.pe.qc.fq.gz /data/SRR492066.pe.qc.fq.gz /data/final-assembly.fa .

Let’s do some simple mapping to do abundance estimation in final assembly.

Setup

First, move to a new directory:

cd /mnt
mkdir mapping
cd mapping

cp /mnt/assembly/final-assembly.fa metagenome.fa

Bowtie mapping

Let’s start by installing bowtie [http://bowtie-bio.sourceforge.net/index.shtml]:

cd /root
curl -O -L http://sourceforge.net/projects/bowtie-bio/files/bowtie/0.12.7/bowtie-0.12.7-linux-x86_64.zip
unzip bowtie-0.12.7-linux-x86_64.zip
cd bowtie-0.12.7
cp bowtie bowtie-build bowtie-inspect /usr/local/bin

Next, build a bowtie reference from the assembly:

cd /mnt/mapping
bowtie-build metagenome.fa metagenome

and then do the mapping:

gunzip -c ../assembly/SRR492065.pe.qc.fq.gz | bowtie -p 4 -q metagenome - > SRR492065.map

Do the same for the second set of reads:

gunzip -c ../assembly/SRR492066.pe.qc.fq.gz | bowtie -p 4 -q metagenome - > SRR492066.map

At the moment, there seems to be no good way to do automated differential
analysis of two samples, so we’ll just show you how to annotate the
assembled sequences with the mapping abundance. This will allow MG-RAST
to properly weight annotation calls.

To do this, we will need to make two copies of the annotated assembly
– one annotated with the first (SRR492065) and the other with the
second (SRR492066) abundances.

python /usr/local/share/khmer/sandbox/make-coverage.py metagenome.fa SRR492065.map
mv metagenome.fa.cov metagenome.SRR492065.fa

python /usr/local/share/khmer/sandbox/make-coverage.py metagenome.fa SRR492066.map
mv metagenome.fa.cov metagenome.SRR492066.fa

What you will see now is that there’s a [cov] annotation for each
sequence in every file – try:

head -4 metagenome.SRR492065.fa

and you should see:

>testasm.1[cov=259]
CAATTTATTTAAATTTTTCTACGATTCCAACA...
>testasm.2[cov=610]
ATTCTACTAATGTCATCTTTTTACCTTCTAGA...

This format can be uploaded directly to MG-RAST as an
abundance-annotated assembly, although there’s no good way to do
comparative analysis yet.

Next: Annotating your metagenome with Prokka

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.2.2.

metagenomics/6-annotating.html

 Navigation

 		
 index

 		khmer-protocols 0.8.3 documentation »

Annotating your metagenome with Prokka

Note

You can start from this point by taking the assembly from
the data on snapshot snap-8f89b092. Just do:

mkdir /mnt/assembly
cd /mnt/assembly
cp /data/final-assembly.fa .

Installing Prokka

We’re going to use the Prokka software [http://www.vicbioinformatics.com/software.prokka.shtml] to
annotate your newly assembled metagenome.

We have to download and install a lot of stuff, though – estimated ~15
-20 minutes.

First, we need to install BioPerl and NCBI BLAST+; for this we’ll use
the Debian Linux package installer, ‘apt-get’:

apt-get update
apt-get -y install bioperl ncbi-blast+

Now download and unpack Prokka:

cd /mnt
curl -O http://www.vicbioinformatics.com/prokka-1.7.tar.gz
tar xzf prokka-1.7.tar.gz
curl -O http://www.vicbioinformatics.com/prokka-1.7.2
cp prokka-1.7.2 prokka-1.7/bin/prokka

Prokka depends on a lot of other software, too; so we’ll need to install
all of that.

Install HMMER [http://hmmer.janelia.org/]:

cd /mnt
curl -O ftp://selab.janelia.org/pub/software/hmmer3/3.1b1/hmmer-3.1b1.tar.gz
tar xzf hmmer-3.1b1.tar.gz
cd hmmer-3.1b1/
./configure --prefix=/usr && make && make install

Install Aragorn [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC373265/]:

cd /mnt
curl -O http://mbio-serv2.mbioekol.lu.se/ARAGORN/Downloads/aragorn1.2.36.tgz
tar -xvzf aragorn1.2.36.tgz
cd aragorn1.2.36/
gcc -O3 -ffast-math -finline-functions -o aragorn aragorn1.2.36.c
cp aragorn /usr/local/bin

Install Prodigal [http://prodigal.ornl.gov/]:

cd /mnt
curl -O http://prodigal.googlecode.com/files/prodigal.v2_60.tar.gz
tar xzf prodigal.v2_60.tar.gz
cd prodigal.v2_60/
make
cp prodigal /usr/local/bin

Install tbl2asn [http://www.ncbi.nlm.nih.gov/genbank/tbl2asn2/]:

cd /mnt
curl -O ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools/converters/by_program/tbl2asn/linux64.tbl2asn.gz
gunzip linux64.tbl2asn.gz
mv linux64.tbl2asn tbl2asn
chmod +x tbl2asn
cp tbl2asn /usr/local/bin

Install GNU Parallel [http://www.biostars.org/p/63816/]:

cd /mnt
curl -O http://ftp.gnu.org/gnu/parallel/parallel-20130822.tar.bz2
tar xjvf parallel-20130822.tar.bz2
cd parallel-20130822/
ls
./configure && make && make install

Install Infernal [http://infernal.janelia.org/]:

cd /mnt
curl -O http://selab.janelia.org/software/infernal/infernal-1.1rc4.tar.gz
tar xzf infernal-1.1rc4.tar.gz
cd infernal-1.1rc4/
ls
./configure && make && make install

Running Prokka

Now, make a new directory:

cd /mnt
mkdir annot
cd annot

Copy in the assembly and remove all the sequences with ‘N’s in them (since
prodigal fails if there are too many, and prokka uses prodigal):

python /usr/local/share/khmer/sandbox/remove-N.py /mnt/assembly/final-assembly.fa metagenome.fa

Now, run Prokka:

/mnt/prokka-1.7/bin/prokka metagenome.fa --outdir metag --prefix testasm

There will be a bunch of files in the dierctory ‘metag/’. Probably the
most interesting is ‘metag/testasm.faa’, which will contain a set of
annotated protein sequences derived from the metagenome.

Next: BLASTing your assembled data

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.2.2.

_static/plus.png

amazon/log-in-with-ssh-win.html

 Navigation

 		
 index

 		khmer-protocols 0.8.3 documentation »

Logging into your new instance “in the cloud” (Windows version)

Download Putty and Puttygen from here: http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

Generate a ppk file from your pem file

(You only need to do this once for each key!)

Open puttygen; select “Load”.

[image: ../_images/win-puttygen.png]
Find and load your ‘.pem’ file; it’s probably in your Downloads
folder. Note, you have to select ‘All files’ on the bottom.

[image: ../_images/win-puttygen-2.png]
Load it.

[image: ../_images/win-puttygen-3.png]
Now, “save private key”. Put it somewhere easy to find.

[image: ../_images/win-puttygen-4.png]
Now that you’ve generated your PPK file from your PEM file, you can log
in. To do that...

Logging into your EC2 instance with Putty

Open up putty, and enter your hostname into the Host Name box.

[image: ../_images/win-putty-1.png]
Now, go find the ‘SSH’ section and enter your ppk file (generated above
by puttygen). Then select ‘Open’.

[image: ../_images/win-putty-2.png]
Log in as “root”.

[image: ../_images/win-putty-3.png]
Declare victory!

[image: ../_images/win-putty-4.png]

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.2.2.

_static/ajax-loader.gif

amazon/using-screen.html

 Navigation

 		
 index

 		khmer-protocols 0.8.3 documentation »

Using ‘screen’

		Author:		Rosangela Canino-Koning

		Date:		June 9, 2011

		Last Updated:		July 24, 2013

Persistent Sessions

Screen is a window manager for terminal sessions. Screen allows you to
run a terminal session, and then disconnect from the computer, and be
able to return to the session at a later date.

To start screen, you run the screen command with a few options:

screen -S <sessionname>

Where sessionname is any meaningful or descriptive title for your screen
session. This creates an independent terminal session, and connects you to it.

Most commands within screen are composed of a prefix key-stroke,
followed by a command character. By default, the prefix is Ctrl-A. In
this tutorial Ctrl-A will represented by “C-a”.

Let’s try a few screen commands.

To disconnect from the session (while leaving it running!), type:

C-a d

This session will remain active until you choose to end it, or you
reboot the computer. You can at this point safely disconnect from SSH,
and the screen session will continue to run.

To reconnect to the session, make sure you’re logged into the UNIX machine,
and type:

screen -r

To illustrate managing multiple screen session, disconnect from the current
session, and create a new session with a second name.:

C-a d
screen -S <secondsessionname>

Disconnect from the second session, and then list the available sessions:

C-a d
screen -list

Note, typing screen -r with multiple active screen sessions will display
the same information.

To reconnect to the first session, include its name after the -r.:

screen -r <sessionname>

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.2.2.

_static/comment.png

amazon/index.html

 Navigation

 		
 index

 		khmer-protocols 0.8.3 documentation »

Getting started with Amazon EC2

		Start up an EC2 instance
		Log in

		Select your zone

		The launch wizard

		“Create a new instance” page 1

		“Create a new instance” page 2

		Wait for your instance to be running

		Adjusting security rules

		Logging into your new instance “in the cloud” (Windows version)
		Generate a ppk file from your pem file

		Logging into your EC2 instance with Putty

		Logging into your new instance “in the cloud” (Mac version)

		Installing Dropbox on your EC2 machine

A final checklist:

		EC2 instance is running;

		used AMI ami-c17ec8a8;

		NOT micro instance (m1.large, or bigger);

		SSH, HTTP, HTTPS are enabled on the security group;

Amazon Web Services reference material

Instance types [http://aws.amazon.com/ec2/instance-types/]

Instance costs [http://aws.amazon.com/ec2/pricing/]

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.2.2.

amazon/installing-dropbox.html

 Navigation

 		
 index

 		khmer-protocols 0.8.3 documentation »

Installing Dropbox on your EC2 machine

IMPORTANT: Dropbox will sync everything you have to your EC2 machine, so
if you are already using Dropbox for a lot of stuff, you might want to
create a separate Dropbox account just for the course.

Start at the login prompt on your EC2 machine:

cd /root

Then, grab the latest dropbox installation package for Linux:

wget -O dropbox.tar.gz "http://www.dropbox.com/download/?plat=lnx.x86_64"

Unpack it:

tar -xvzf dropbox.tar.gz

Make the Dropbox directory on /mnt and link it in:

mkdir /mnt/Dropbox
ln -fs /mnt/Dropbox /root

and then run it:

~/.dropbox-dist/dropboxd &

When you get a message saying “this client is not linked to any account”,
copy/paste the URL into browser and go log in. Voila!

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.2.2.

_static/down.png

_static/comment-close.png

amazon/start-up-an-ec2-instance.html

 Navigation

 		
 index

 		khmer-protocols 0.8.3 documentation »

Start up an EC2 instance

Log in

Go to ‘https://aws.amazon.com‘ in a Web browser.

Select ‘My Account/Console’ menu option ‘AWS Management Console.”

Log in with your username & password.

Click on EC2 (upper left).

Select your zone

Many of the resources that we use are hosted by Amazon on the East coast.
Make sure that your dashboard has ‘N. Virginia’ on the upper right:

[image: ../_images/ec2-dashboard-zone.png]
If it doesn’t say N. Virginia, click on it and select “US East (N. Virginia)”.

The launch wizard

Select “Launch Instance” (midway down the page), and select “Quick
Launch Wizard”.

[image: ../_images/ec2-wizard.png]
On this page,

		Name your new computer something (here, “Adam”; name it after yourself instead).

		Create a new key pair (here, “Adam”; name it after yourself instead) and Download it.

		Select “More Amazon machine images.”

		Click on “Continue.” This will be greyed out until you download the
key pair (button, upper right).

Note: You only need to create a new key pair the first time you’re
doing this – you can select the one you created the first time, if you
still have a copy of the key file you downloaded stored somewhere.

“Create a new instance” page 1

Enter ‘ami-c17ec8a8’ into the search box and click “search”. Select
it, and hit Continue.

(If it doesn’t show up, exit the wizard and make sure you’re in US East
zone – see upper right of EC2 console.)

“Create a new instance” page 2

On this page, “Edit details” until it looks like the below image –

[image: ../_images/ec2-details.png]

		Make sure your “Type” is m1.large.

		Make sure your “Availability zone” is something specific, like us-east-1c.

		Make sure your “Security group” is set to default.

Then, click “Launch”.

Wait for your instance to be running

Go to the ‘instances’ list and make sure your particular instance is
running.

[image: ../_images/ec2-instance-running.png]
You’ll need the hostname of your new computer, on the bottom (ec2-...) –
we suggest selecting this and copying it somewhere.

Now go to Adjusting security rules.

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.2.2.

_static/up.png

amazon/security-rules.html

 Navigation

 		
 index

 		khmer-protocols 0.8.3 documentation »

Adjusting security rules

Before continuing, you’ll need to adjust your security rules so that you
can access your new instance properly. To do that, go over to Security
Groups on the dashboard, select ‘default’, and then adjust your security
rules to enable ports 22, 80, and 443 (SSH, HTTP, and HTTPS).

[image: ../_images/ec2-security.png]
Make sure you “Apply rule changes” afterwards.

Then, go to Logging into your new instance “in the cloud” (Windows version) or Logging into your new instance “in the cloud” (Mac version)

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.2.2.

_static/up-pressed.png

_static/down-pressed.png

_static/comment-bright.png

_static/file.png

_static/minus.png

CHECKLIST.html

 Navigation

 		
 index

 		khmer-protocols 0.8.3 documentation »

 For a new release,

		update versions in docs to vX.Y

		tag new release (vX.Y)

		push tag to ged-lab/khmer-protocols

		tag appropriate versions of khmer, screed, and eel-pond

		blastkit too??

		update readthedocs to point to the appropriate version appropriately.

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.2.2.

_images/win-puttygen-4.png
18 PuTTY Key Generator . |

File Key Conversions Help
Key
Pubic key for pasting nto OpenSSH authorzed_keys fie:
shsa -
PAABINGAC yC2EAAMAD KA AAABCCOLGZICH 24N DLsSSTR ! |
WaH72t+3anZc+/0p YXaUBadHy314gEQpeKgORINbIY hnihchOj
6120 7rlomAIGkM3ZGLySSgadp
“AQRIYW 73k TLWt0n3cwiuyPoA2pygl6y47VBvanimVUEF AXMErSOngke 1h/i35.CDZ2 ~
Key fingerpint sshisa 2048 c7cd 91id o7 d3cblecT o722 W 87,0841
Key comment: imported-opensshkey
Key passphrase:
Confim passphrase:
Adtons

Generate a publc/private key pair

Load an exising pivate key fie.
Save the generated key

Parameters

Type of key to generste:
SSH1 (RSA)

Numberof bits in 2 generated key:

search.html

 Navigation

 		
 index

 		khmer-protocols 0.8.3 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.2.2.

_images/win-putty-3.png
Cogin as: zoocl

_images/win-putty-2.png
R PuTTY Configuration

e

‘Optons contrling SSH authentcation

[T Bypass authentication entirely (SSH-2 only)
Display pre-authentication barner (SSH-2 only)
Authentication methods

tempt authentication using Pageant

[T Attempt TIS or CryptoCard auth (SSH-1)

tempt "keyboard interactive” auth (S5H-2)
Authentication parameters.

] Alow agent forwarting

[C] Alow attempted changes of usemame in SSH-2
Private

LICENSE.html

 Navigation

 		
 index

 		khmer-protocols 0.8.3 documentation »

License

This documentation and all textual/graphic site content is licensed
under the Creative Commons - 0 License (CC0) [http://creativecommons.org/publicdomain/zero/1.0/]. Please feel
free to copy, modify, distribute and perform the work, even for
commercial purposes, all without asking permission.

You can find the source code for this material under git version
control on github at https://github.com/ged-lab/khmer-protocols/. Please fork
at your own leisure :).

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.2.2.

_images/win-puttygen.png

_images/0-vs-6-hour.matrix.png
Expression in condition 2

10

10°

10

10

10°

10

10

10°

107

10°

all genes
DE genes

107

10° 10 10" 10° 10°

Expression in condition 1

10

10°

10

_images/win-puttygen-3.png
PuTTYgen Notice =

Successfully imported foreign key
(OpenSSH SSH-2 private key).

To use this key with PuTTY, you need to
use the "Save private key” command to
Saveitin PuTTV's own format.

_images/win-putty-4.png
Custom-Compiled Atlas, Numpy, Scipy, etc
Open Grid Scheduler (0GS) queuing system

Condor workload management system

OpenMPI compiled with Open Grid Scheduler support
IPython 0.12 with parallel support

and more! (use 'apkg -1' to show all installed packages)

[open Gria scheduler/Condor cheat sheet:

gstat/condor_g - show status of batch jobs
qhost/condor_status- show status of hosts, queues, and jabs
qsub/condor_submit - submit batch jobs (e.g. gsub -cwd ./jobscript.sh)
qdel/condor_rm - delete batch jobs (e.g. qdel 7)

qeonf - configure Open Grid Scheduler system

Current system stats:

System load: 0.0 Processes: &
Usage of /: 32.4% of 9.84G3 Users logged in: o

Memory usage: 0% 1P address for eth0: 10.196.153.188
Swap usage: 0%

ootesp-10-296-153-100:-%]

_images/ec2-dashboard-instance-name.png
Services -

4)((Alinstance Types

EC2 Dashboard Launch Instance Actions
Events ‘4
Tags Viewing: ((All Instances

(=) INSTANCES & Name ™ Instance
Instances ¥ prokka i i-cO3fadae
Spot Requests

Reserved Instances

= IMAGES
AMIs
Bundle Tasks

=] ELASTIC BLOCK STORE
Volumes
Snapshots

= NETWORK & SECURITY 1EC2 Instance selected.

AMIID Root Device

Type

ami-c17ec8a8 ebs mi.large

Security Groups
Elastic IPs
Placement Groups
Load Balancers Description | Status Checks | Monitoring || Tags
Key Pairs AMI: beacon-2012.09.03 (ami-c17ec8a8)
Network Interfaces

Zone: us-east-1c

Type: ml.large

Scheduled Events:

© 2008 - 2013, Amazon Web Services, Inc. o its affiiates. All rights reserved.

No scheduled events

Privacy Policy Terms of Use

State Status Checks Alarm Status.
@ running @ 2/2 checks pz none
Alarm Status: none
Security Groups: default. view rules
State: running
Owner: 661456023460

< <

Monitoring
M basic

N. Vir

nia - Help

(S]

1to1of 1Instances &

Security Groups
default

Feedback

Ke
ity

_images/ec2-wizard.png
Create a New Instance

Select n option below:

O classic Wizard

Launch an On-Demand or Spot Instance
using the classic wizard with fine-grained
control over how it is aunched.

© Quick Launch Wizard

Launch an On-Demand Instance using an
editable, default configuration so that
You can get started In the cloud as.
auickly s possible,

© AWS Marketplace

AWS Marketplace Is an online store
where you can find and buy software that
Funs on AWS. Launch with 1-Click and
pay by the hour.

Submit Feedback ~ Getting Started Guide

T

Choose a Key P:

R T ———
' Select Extsting "EFESENEw G None

Clame: pdam

Please ROt BT you need to download the key pair before you can cantinue.

D

Choose a Launch G

‘Search through public and AWS Marketplag AMIs or choose from your own custom AM.

The Amazon Linux AN s 2n EBS-backed, PV-GRUB Image. It includes 64 bit © 32 bit O
Linux 3.4, AWS tools, and repository access to multiple versions of Free tier eigible
HySQL, PostgreSQL, Python, Ruby, and Tomeat.

Red Hat Enterprise Linux 6.4

Red Hat Enterprise Linux version 6.4, EBS-boot. 64bit® 32bitO

‘SUSE Linux Enterprise Server 11 . .
'SUSE Linux Enterprise Server 11 Service Pack 2 basic install, EBS boot 64 bit © 32 bit O
with Amazon EC2 AMI Tools preinstalied; Apache 2.2, MySQL 5.0, PHP 5.3, and Ruby 1.8.7
avallable

‘Ubuntu Server 12.04.2 LTS

Ubuntu Server 12.04.2 LTS with support avallable from Canonical
(hitp:/www.ubuntu.com/cloud/services).

]
c]

64bit® 32bitO
Free tier eigible

<>

Note: You can customize your settings In the next step.

amazon/log-in-with-ssh-mac.html

 Navigation

 		
 index

 		khmer-protocols 0.8.3 documentation »

Logging into your new instance “in the cloud” (Mac version)

OK, so you’ve created a running computer. How do you get to it?

The main thing you’ll need is the network name of your new computer.
To retrieve this, go to the instance view and click on the instance,
and find the “Public DNS”. This is the public name of your computer
on the Internet.

Copy this name, and connect to that computer with ssh under the username
‘root’, as follows.

First, find your private key file; it’s the .pem file you downloaded
when starting up your EC2 instance. It should be in your Downloads
folder. Move it onto your desktop and rename it to ‘amazon.pem’.

Next, start Terminal (in Applications... Utilities...) and type:

chmod og-rwx ~/Desktop/amazon.pem

to set the permissions on the private key file to “closed to all evildoers”.

Then type:

ssh -i ~/Desktop/amazon.pem root@ec2-???-???-???-???.compute-1.amazonaws.com

Here, you’re logging in as user ‘root’ to the machine
‘ec2-174-129-122-189.compute-1.amazonaws.com’ using the authentication
key located in ‘amazon.pem’ on your Desktop.

Note, you have to replace the stuff after the ‘@’ sign with the name
of the host; see the red circle in:

[image: ../_images/ec2-dashboard-instance-name.png]

At the end you should see text and a prompt that look like this:

[image: ../_images/win-putty-4.png]

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.2.2.

_images/ec2-details.png
Create a New Instance Cancel (X1

starcluster-base-ubuntu-11.10-x86_64 (ami-999d450)
StarCluster Base Ubuntu 11.10 xB6_64 (Us-east-1)

Adam
No
stop
Launch into a VPC: No

Security Details
Key Pair: Adam

Kernel ID: Default Ramdisk ID: Default
User Data: 1AM Role: @
Network Interfaces:

. Gosock i dotmts] [cownen |

_images/ec2-dashboard-zone.png
Services ~ nia) Help
EC2 Dashboard Launch Instance | Actions v ¢ ® 0
Events «

Tags Viewing: ((All Instances 4)(Allinstance Types 4)(¢ € 1to1of1Instances

_images/win-puttygen-2.png
B Load private key: LX)

.+ Computer » Homeoon psf @) » winshare < [[scarch winshare »
Organize v New folder 0 @ |
El RecentPlaces ~ Name . Date modified Type
D ab AN21043PM PEMFile

_images/ec2-instance-running.png
EC2 Dashboard

Launch Instance | Actions v

c & 0

Events «

Tgs Viewing: [Allinstances

+) (Alinstance Types

] (Search

D}

1€ ¢ 1o2or2msunces > 3]

INSTANGES O Name ™ instance

RootDevice | Type

Status Checks | Alarm Status Monitoring

Security Groups | Key Pair Name Vi

Instances O Elieh | i@ rd6dtiebd

ami-999d4910

ebs

milarge

Loading... basic

default el pe

Spot Requests
Reserved Instances

oo

ami-999d4910

ebs

— e 5

default Adam pe

IMAGES

AMis
Bunde Tasks

ELASTIC BLOCK STORE
Volumes
Snapshots.

NETWORK & SECURITY
Seaurity Groups
Elastic IPs
Placement Groups
Load Balancers

Key Pairs
Network Interfaces

@ EC2 Instance: Adam

i-f6897293) @

AmMr:

Starcluster-base-ubuntu-11.10-x86_64 (ami-99949f0)

Zone:

us-east-1c

Alarm Status:

Security Groups:

default. view rules

_images/ec2-security.png
n- N

EC2 Dashboard Create Security Group | Delete (S
Events q

Tags € < tetoimems > O
=) INSTANCES Group ID Name VPC ID Description

Instances & | sg-d14489ba () default default group

Spot Requests

Reserved Instances

(=) IMAGES
AMIs
Bundle Tasks
=) ELASTIC BLOCK STORE Details || Inbound |
Volumes
e I CT AT RO . <rvice) —

59-d14489ba (default)
Port range:
80 or 49152-65535)
Source: o0
e T T 0- 65535 sg-d14489ba (default)
Pacoment o 1234567890/ default) 22 (SSH) 0.0.0.0/0 Delete
ment Sroups [AddRue| | 80 (HTTP) 0.0.0.0/0 Delete
Load Balancers 443 (HTTPS) 0.0.0.0/0 Delete
Key Pairs 0.0.0.0/0
Network Interfaces [Apply Rule Changes]
Port (Service)
0 - 65535 59-d14489ba (default)

_images/win-putty-1.png
B8 PUTTY Configuration

-——

& Session 2

£SSH

- Ath

X1

“

Basic optons foryour PuTTY session

‘Specty the destnation you want to connect to

mrnaseq/0-download-and-save.html

 Navigation

 		
 index

 		khmer-protocols 0.8.3 documentation »

0. Downloading and Saving Your Initial Data

We’re going to run transcriptome assembly completely in the cloud,
because that way (a) you don’t need to buy a big computer, and (b)
I don’t have to figure out all the special details of your own
computer system.

This does mean that the first thing you need to do is get your data
over to the cloud. I tend to just store it there in the first place,
because...

The basics

...Amazon is happy to rent disk space to you, in addition to compute time.
They’ll rent you disk space in a few different ways, but the way that’s
most useful for us is through what’s called Elastic Block Store. This
is essentially a hard-disk rental service.

There are two basic concepts – “volume” and “snapshot”. A “volume” can
be thought of as a pluggable-in hard drive: you create an empty volume of
a given size, attach it to a running instance, and voila! You have extra
hard disk space. Volume-based hard disks have two problems, however:
first, they cannot be used outside of the “availability zone” they’ve
been created in, which means that you need to be careful to put them
in the same zone that your instance is running in; and they can’t be shared
amongst people.

Snapshots, the second concept, are the solution to transporting and
sharing the data on volumes. A “snapshot” is essentially a frozen
copy of your volume; you can copy a volume into a snapshot, and a
snapshot into a volume.

Getting started

Run through Getting started with Amazon EC2 once, to get the hang of
the mechanics. Essentially you create a disk; attach it; format it;
and then copy things to and from it.

Downloading and saving your data to a volume

There are many different ways of getting big sequence files to and
from Amazon. The two that I mostly use are ‘curl’, which downloads
files from a Web site URL; and ‘ncftp’, which is a robust FTP client
that let’s you get files from an FTP site. Sequencing centers almost
always make their data available in one of these two ways.

Note

To use ncftp on your Amazon instance, you may need to install it:

apt-get -y install ncftp

For example, to retrieve a file from an FTP site, you would do something
like:

cd /mnt
ncftp -u <username> ftp://path/to/FTP/site

use ‘cd’ to find the right directory, and then:

>> mget *

to download the files. Then type ‘quit’. You can also use ‘curl’ to
download files one at a time from Web or FTP sites.

Once you have the files, figure out their size using ‘du -sk’ (e.g. after the
above, ‘du -sk /mnt’ will tell you how much data you have saved under /mnt),
and go create and attach a volume (see Getting started with Amazon EC2).

This data is now something that will stick around when you shut down
your instance. It’s a good rule of thumb to do “savepoints” – whenever
you complete a big chunk of work, think about saving the data at that
point. I’ve broken the mRNAseq tutorial down into chunks of work where
you can do this – after each Web page, basically.

Some test data

To get started with multfile analysis and assembly, I’ve provided some
test mRNAseq data from embryonic stages of Nematostella vectensis;
the source is this excellent paper [http://www.evodevojournal.com/content/4/1/16] by Tulin et al., “A
quantitative reference transcriptome for Nematostella vectensis”. The
data is on snapshot ‘snap-f5a9dea7’, so go create a volume from that
and mount it as ‘/data’ to get started; to mount it read-only, do:

mount -o ro /dev/xvdf /mnt

after attaching the volume as ‘sdf’.

Next: 1. Quality Trimming and Filtering Your Sequences

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.2.2.

mrnaseq/5-building-transcript-families.html

 Navigation

 		
 index

 		khmer-protocols 0.8.3 documentation »

5. Building transcript families

Install khmer, screed, and BLAST. (See 1. Quality Trimming and Filtering Your Sequences and
BLASTing your assembled data). I would suggest using an m1.large or
m1.xlarge machine.

You’ll also need to install some eel-pond scripts:

cd /usr/local/share
git clone https://github.com/ctb/eel-pond.git
cd eel-pond
git checkout protocols-v0.8.3

Copy in your data

You need your assembled transcriptome (from
e.g. 3. Running the Actual Assembly). Put it in /mnt as
‘trinity-nematostella-raw.fa.gz’:

cd /mnt
gzip -c work/trinity_out_dir/Trinity.fasta > trinity-nematostella-raw.fa.gz

For the purposes of your first run through, I suggest just grabbing my copy
of the Nematostella assembly:

cd /mnt
curl -O https://s3.amazonaws.com/public.ged.msu.edu/trinity-nematostella-raw.fa.gz

Run khmer partitioning

Partitioning runs a de Bruijn graph-based clustering algorithm that will
cluster your transcripts by transitive sequence overlap. That is, it will
group transcripts into transcript families based on shared sequence.

/usr/local/share/khmer/scripts/do-partition.py -x 1e9 -N 4 --threads 4 nema trinity-nematostella-raw.fa.gz

This should take about 15 minutes, and outputs a file ending in ‘.part’
that contains the partition assignments. Now, group and rename the
sequences:

python /usr/local/share/eel-pond/rename-with-partitions.py nema trinity-nematostella-raw.fa.gz.part
mv trinity-nematostella-raw.fa.gz.part.renamed.fasta.gz trinity-nematostella.renamed.fa.gz

Looking at the renamed sequences

Let’s look at the renamed sequences:

gunzip -c trinity-nematostella.renamed.fa.gz | head

You’ll see that each sequence name looks like this:

>nema.id1.tr16001 1_of_1_in_tr16001 len=261 id=1 tr=16001

Some explanation:

		‘nema’ is the prefix that you gave the rename script, above; modify
accordingly for your own organism. It’s best to change it each time
you do an assembly, just to keep things straight.

		
		‘idN’ is the unique ID for this sequence; it will never be repeated in this

		file.

		‘trN’ is the transcript family, which may contain one or more transcripts.

		‘1_of_1_in_tr16001’ tells you that this transcript family has only
one transcript in it (this one!) Other transcript families may
(will) have more.

		‘len’ is the sequence length.

Next: 6. Annotating transcript families

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.2.2.

mrnaseq/index.html

 Navigation

 		
 index

 		khmer-protocols 0.8.3 documentation »

The Eel Pond mRNAseq Protocol

		author:		Titus Brown, Camille Scott, and Leigh Sheneman.

Special thanks to Dr. Joshua Rosenthal for his help in developing this,
and to Dr. Leslie Babonis for her feedback on various problems!

The tutorial:

		0. Downloading and Saving Your Initial Data

		1. Quality Trimming and Filtering Your Sequences

		2. Applying Digital Normalization

		3. Running the Actual Assembly

		BLASTing your assembled data

		5. Building transcript families

		6. Annotating transcript families

		7. Expression analysis (with RSEM)

		8. Differential expression (with EBSeq)

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.2.2.

mrnaseq/2-diginorm.html

 Navigation

 		
 index

 		khmer-protocols 0.8.3 documentation »

2. Applying Digital Normalization

Note

You can start this tutorial with the contents of EC2/EBS snapshot
snap-126cc847.

Note

You’ll need ~15 GB of RAM for this, or more if you have a LOT of data.

Link in your data

Make sure your data is in /mnt/work/. If you’ve loaded it onto /data,
you can do:

cd /mnt
mkdir work
cd /mnt/work
ln -fs /data/*.qc.fq.gz .

Run digital normalization

Apply digital normalization to the paired-end reads:

/usr/local/share/khmer/scripts/normalize-by-median.py -p -k 20 -C 20 -N 4 -x 3e9 --savehash normC20k20.kh *.pe.qc.fq.gz

and then to the single-end reads:

/usr/local/share/khmer/scripts/normalize-by-median.py -C 20 --loadhash normC20k20.kh --savehash normC20k20.kh *.se.qc.fq.gz

Note the ‘-p’ in the first normalize-by-median command – when run on
PE data, that ensures that no paired ends are orphaned. However, it
will complain on single-ended data, so you have to give the data to it
separately.

Also note the ‘-N’ and ‘-x’ parameters. These specify how much memory
diginorm should use. The product of these should be less than the
memory size of the machine you selected. The maximum needed for any
transcriptome should be in the ~60 GB range, e.g. -N 4 -x 15e9; for
only a few hundred million reads, 16 GB should be plenty. (See
choosing hash sizes for khmer [http://khmer.readthedocs.org/en/latest/choosing-hash-sizes.html]
for more information.)

Trim off likely erroneous k-mers

Now, run through all the reads and trim off low-abundance parts of
high-coverage reads:

/usr/local/share/khmer/scripts/filter-abund.py -V normC20k20.kh *.keep

This will turn some reads into orphans, but that’s ok – their partner
read was bad.

Rename files

You’ll have a bunch of ‘keep.abundfilt’ files – let’s make things prettier.

First, let’s break out the orphaned and still-paired reads:

for i in *.pe.*.abundfilt;
do
 /usr/local/share/khmer/scripts/extract-paired-reads.py $i
done

We can combine the orphaned reads into a single file:

for i in *.se.qc.fq.gz.keep.abundfilt
do
 pe_orphans=$(basename $i .se.qc.fq.gz.keep.abundfilt).pe.qc.fq.gz.keep.abundfilt.se
 newfile=$(basename $i .se.qc.fq.gz.keep.abundfilt).se.qc.keep.abundfilt.fq.gz
 cat $i $pe_orphans | gzip -c > $newfile
done

We can also rename the remaining PE reads & compress those files:

for i in *.abundfilt.pe
do
 newfile=$(basename $i .fq.gz.keep.abundfilt.pe).keep.abundfilt.fq
 mv $i $newfile
 gzip $newfile
done

This leaves you with a whole passel o’ files, most of which you want to go
away!

6Hour_CGATGT_L002_R1_005.pe.qc.fq.gz
6Hour_CGATGT_L002_R1_005.pe.qc.fq.gz.keep
6Hour_CGATGT_L002_R1_005.pe.qc.fq.gz.keep.abundfilt
6Hour_CGATGT_L002_R1_005.pe.qc.fq.gz.keep.abundfilt.se
6Hour_CGATGT_L002_R1_005.se.qc.fq.gz
6Hour_CGATGT_L002_R1_005.se.qc.fq.gz.keep
6Hour_CGATGT_L002_R1_005.se.qc.fq.gz.keep.abundfilt

So, finally, let’s get rid of a lot of the old files

rm *.se.qc.fq.gz.keep.abundfilt
rm *.pe.qc.fq.gz.keep.abundfilt.se
rm *.keep
rm *.abundfilt
rm *.qc.fq.gz
rm *.kh

Gut check

You should now have:

6Hour_CGATGT_L002_R1_005.pe.qc.keep.abundfilt.fq.gz
6Hour_CGATGT_L002_R1_005.se.qc.keep.abundfilt.fq.gz

These files are, respectively, the paired (pe) quality-filtered (qc)
digitally normalized (keep) abundance-trimmed (abundfilt) FASTQ (fq)
gzipped (gz) sequences, and the orphaned (se) quality-filtered (qc)
digitally normalized (keep) abundance-trimmed (abundfilt) FASTQ (fq)
gzipped (gz) sequences.

Save all these files to a new volume, and get ready to assemble!

Next: 3. Running the Actual Assembly.

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.2.2.

mrnaseq/8-differential-expression.html

 Navigation

 		
 index

 		khmer-protocols 0.8.3 documentation »

8. Differential expression (with EBSeq)

Note

You can also start with the data on snap-1025bf17; mount it as /data
and do:

cd /mnt
gunzip -c /data/nematostella.fa.gz > ./nematostella.fa
mkdir ebseq
cd ebseq

rsem-generate-data-matrix /data/[0-9].fq.genes.results /data/10.fq.genes.results > 0-vs-6-hour.matrix

Note

If all you have is a genes.results file, you can recover the
*.fq.genes.results files by doing the following:

python /usr/local/share/eel-pond/unpack-genes-matrix.py genes.results

Now run rsem-generate-data-matrix to put together the columns you’re
interested in for the pairwise comparison.

Go to /mnt and make a new directory:

cd /mnt
mkdir ebseq
cd ebseq
cp ../rsem/0-vs-6-hour.matrix .

Next, run EBSeq:

rsem-run-ebseq 0-vs-6-hour.matrix 5,5 0-vs-6-hour.changed

Here, the .matrix file contains 2 conditions, each with 5 replicates;
if you had two replicates, you would call rsem-run-ebseq with 2,2.

The EBSeq output will be in ‘0-vs-6-hour.changed’. Read the docs [http://deweylab.biostat.wisc.edu/rsem/rsem-run-ebseq.html] to
understand what’s in the output file – you’re most interested in the
PPDE (posterior probability that a transcript is differentially
expressed) and the PostFC (posterior fold change) columns, columns 4
and 5.

Finally, let’s extract differentially expressed genes, and combine
them with the annotations in your transcripts file.

python /usr/local/share/eel-pond/extract-and-annotate-changed.py 0-vs-6-hour.changed /mnt/nematostella.fa 0-vs-6-hour.changed.csv

This will produce a file containing many rows, each with 5 columns:
each row is a transcript family, and the columns are the probability
of that transcript family being differentially expressed (according to
EBSeq), the posterior fold change (calculated by EBSeq), the real
fold change (EBSeq), the transcript family name, and any annotations
that have been assigned to that transcript family.

This file can be opened directly in Excel or most any spreadsheet program.

To visualize the distribution of gene expression in the two conditions you
can do:

python /usr/local/share/eel-pond/plot-expression.py 0-vs-6-hour.matrix 5,5 0-vs-6-hour.changed.csv

This will produce a .PNG image showing all of the genes’ expression levels
in condition 1 against their levels in condition 2, and will show in a
separate color those genes that are differentially expressed. Running it
on the demo data set will produce an image as below

[image: ../_images/0-vs-6-hour.matrix.png]

...and that’s all, folks!

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.2.2.

mrnaseq/3-big-assembly.html

 Navigation

 		
 index

 		khmer-protocols 0.8.3 documentation »

3. Running the Actual Assembly

All of the below should be run in screen, probably... You will want
at least 15 GB of RAM, maybe more.

(If you start up a new machine, you’ll need to go to
1. Quality Trimming and Filtering Your Sequences and install khmer and screed.)

Note

You can start this tutorial with the contents of EC2/EBS snapshot
snap-7b0b872e.

Installing Trinity

To install Trinity:

cd /root

curl -L http://sourceforge.net/projects/trinityrnaseq/files/latest/download?source=files > trinity.tar.gz
tar xzf trinity.tar.gz
cd trinityrnaseq*/
export FORCE_UNSAFE_CONFIGURE=1
make

Install bowtie

Download and install bowtie:

cd /root
curl -O -L http://sourceforge.net/projects/bowtie-bio/files/bowtie/0.12.7/bowtie-0.12.7-linux-x86_64.zip
unzip bowtie-0.12.7-linux-x86_64.zip
cd bowtie-0.12.7
cp bowtie bowtie-build bowtie-inspect /usr/local/bin

Install samtools

Download and install samtools:

cd /root
curl -L http://sourceforge.net/projects/samtools/files/latest/download?source=files >samtools.tar.bz2
tar xjf samtools.tar.bz2
mv samtools-* samtools-latest
cd samtools-latest/
make
cp samtools bcftools/bcftools misc/* /usr/local/bin

Build the files to assemble

For paired-end data, Trinity expects two files, ‘left’ and ‘right’;
there can be orphan sequences present, however. So, below, we split
all of our interleaved pair files in two, and then add the single-ended
seqs to one of ‘em.

cd /mnt/work
for i in *.pe.qc.keep.abundfilt.fq.gz
do
 python /usr/local/share/khmer/scripts/split-paired-reads.py $i
done

cat *.1 > left.fq
cat *.2 > right.fq

gunzip -c *.se.qc.keep.abundfilt.fq.gz >> left.fq

Assembling with Trinity

Run the assembler!

/root/trinityrnaseq*/Trinity.pl --left left.fq --right right.fq --seqType fq -JM 10G

Note that this last bit (10G) is the maximum amount of memory to use. You
can increase (or decrease) it based on what machine you rented. This size
works for the m1.xlarge machines.

Once this completes (on the Nematostella data it might take about 12 hours),
you’ll have an assembled transcriptome in trinity_out_dir/Trinity.fasta.

You can now copy it over via Dropbox, or set it up for BLAST (see
BLASTing your assembled data).

Next: 5. Building transcript families (or BLASTing your assembled data).

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.2.2.

mrnaseq/7-expression-analysis.html

 Navigation

 		
 index

 		khmer-protocols 0.8.3 documentation »

7. Expression analysis (with RSEM)

In addition to screed, khmer, and eel-pond, you’ll also need to
install bowtie (see 3. Running the Actual Assembly).

Note

You can grab the partitioned and renamed data for nematostella here:

cd /mnt
curl -O http://athyra.idyll.org/~t/trinity-nematostella.renamed.fa.gz
gunzip -c trinity-nematostella.renamed.fa.gz > nematostella.fa

Installing rsem

We’ll be using the RSEM package [http://deweylab.biostat.wisc.edu/rsem/]
to do some expression analysis, and EBSeq [http://www.biostat.wisc.edu/~kendzior/EBSEQ/] to do differential
expression. To install these packages, do:

apt-get -y install r-base-core r-cran-gplots

and then:

cd /root
curl -O http://deweylab.biostat.wisc.edu/rsem/src/rsem-1.2.8.tar.gz
tar xzf rsem-1.2.8.tar.gz
cd rsem-1.2.8
make
cd EBSeq
make

And now add this directory into your PATH, which is where Unix looks for
things to run:

echo 'export PATH=$PATH:/root/rsem-1.2.8' >> ~/.bashrc
source ~/.bashrc

Installing bowtie

If you didn’t install bowtie on this machine already (e.g. as part of
3. Running the Actual Assembly), RSEM needs it; do:

cd /root
curl -O -L http://sourceforge.net/projects/bowtie-bio/files/bowtie/0.12.7/bowtie-0.12.7-linux-x86_64.zip
unzip bowtie-0.12.7-linux-x86_64.zip
cd bowtie-0.12.7
cp bowtie bowtie-build bowtie-inspect /usr/local/bin

Prepare the reference

Go to a working directory on /mnt:

cd /mnt
mkdir rsem
cd rsem

Link in the nematostella file:

ln -fs ../nematostella.fa .

Make a transcript-to-gene-map file:

python /usr/local/share/eel-pond/make-transcript-to-gene-map-file.py nematostella.fa nematostella.fa.tr_to_genes

and ask RSEM to prepare the reference against which to map the reads:

rsem-prepare-reference --transcript-to-gene-map nematostella.fa.tr_to_genes nematostella.fa nema

(Here, the ‘nema’ at the end is what to call the reference; the other
two are just file names.)

This last step will take about half an hour or more.

Find and list the reads

Find the QC reads, and link them in; e.g. if using the Nematostella
reads, make a volume from snap-126cc847, mount it as /data, and do:

ln -fs /data/*.pe.qc.fq.gz .

Now, make a list of the data files:

ls -1 *.pe.qc.fq.gz > list.txt

Note, the order of the files in this list is going to determine the
order in the final RSEM output matrix. You might consider rearranging
it so that your controls are first, etc.

Run RSEM

Now, for each one of the files in ‘list.txt’, run RSEM. This will
take a long time for lots of data, so definitely run this step in screen!

n=1
for filename in $(cat list.txt)
do
 echo mapping $filename
 gunzip -c $filename > ${n}.fq
 /usr/local/share/khmer/scripts/split-paired-reads.py ${n}.fq
 rsem-calculate-expression --paired-end ${n}.fq.1 ${n}.fq.2 nema -p 4 ${n}.fq
 rm ${n}.fq ${n}.fq.[12] ${n}.fq.transcript.bam ${n}.fq.transcript.sorted.bam
 n=$(($n + 1))
done

Gather results:

rsem-generate-data-matrix [0-9].fq.genes.results 10.fq.genes.results > 0-vs-6-hour.matrix

...and voila, you now a file, ‘0-vs-6-hour.matrix’,
which is a tab-separated file (that Excel can
load) containing a matrix of gene expression levels in FPKM (rows) vs
condition (columns). The ‘1’ condition will be the first file in
list.txt, the ‘2’ condition will be the second file, etc. If you want
the conditions in a specific order, you can specify the files in the
order you want – e.g.

rsem-generate-data-matrix 1.fq.genes.results 3.fq.genes.results > results.matrix

Note

Our current protocol only supports pairwise differential expression
analysis, i.e. comparing two conditions, which is why we only
create the 0-vs-6 hour matrix, above.

Next: 8. Differential expression (with EBSeq)

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.2.2.

mrnaseq/1-quality.html

 Navigation

 		
 index

 		khmer-protocols 0.8.3 documentation »

1. Quality Trimming and Filtering Your Sequences

Boot up an m1.xlarge machine from Amazon Web Services; this has about
15 GB of RAM, and 2 CPUs, and will be enough to complete the assembly
of the Nematostella data set.

Note

The end results of this tutorial are available as public snapshot
snap-8b155fd9 on EC2/EBS.

Install software

Install screed [http://screed.readthedocs.org/]:

cd /usr/local/share
git clone https://github.com/ged-lab/screed.git
cd screed
git checkout protocols-v0.8.3
python setup.py install

Install khmer [http://khmer.readthedocs.org]:

cd /usr/local/share
git clone https://github.com/ged-lab/khmer.git
cd khmer
git checkout protocols-v0.8.3
make

echo 'export PYTHONPATH=$PYTHONPATH:/usr/local/share/khmer/python' >> ~/.bashrc
source ~/.bashrc

Install Trimmomatic [http://www.usadellab.org/cms/?page=trimmomatic]:

cd /root
curl -O http://www.usadellab.org/cms/uploads/supplementary/Trimmomatic/Trimmomatic-0.30.zip
unzip Trimmomatic-0.30.zip
cd Trimmomatic-0.30/
cp trimmomatic-0.30.jar /usr/local/bin
cp -r adapters /usr/local/share/adapters

Install libgtextutils and fastx [http://hannonlab.cshl.edu/fastx_toolkit/]:

cd /root
curl -O http://hannonlab.cshl.edu/fastx_toolkit/libgtextutils-0.6.1.tar.bz2
tar xjf libgtextutils-0.6.1.tar.bz2
cd libgtextutils-0.6.1/
./configure && make && make install

cd /root
curl -O http://hannonlab.cshl.edu/fastx_toolkit/fastx_toolkit-0.0.13.2.tar.bz2
tar xjf fastx_toolkit-0.0.13.2.tar.bz2
cd fastx_toolkit-0.0.13.2/
./configure && make && make install

In each of these cases, we’re downloading the software – you can use
google to figure out what each package is and does if we don’t discuss
it below. We’re then unpacking it, sometimes compiling it (which we
can discuss later), and then installing it for general use.

Find your data

Either load in your own data (as in 0. Downloading and Saving Your Initial Data) or
create a volume from snapshot snap-f5a9dea7 and mount it as /data
(again, this is the data from Tulin et al., 2013 [http://www.evodevojournal.com/content/4/1/16]).

Check:

ls /data

If you see all the files you think you should, good! Otherwise, debug.

If you’re using the Tulin et al. data provided in the snapshot above,
you should see a bunch of files like:

/data/0Hour_ATCACG_L002_R1_001.fastq.gz

Link your data into a working directory

Rather than copying the files into the working directory, let’s just
link them in – this creates a reference so that UNIX knows where to
find them but doesn’t need to actually move them around.

cd /mnt
mkdir work
cd work

ln -fs /data/*.fastq.gz .

(The ‘ln’ command is what does the linking.)

Now, do an ‘ls’ to list the files. If you see only one entry, *.fastq.gz,
then the ln command above didn’t work properly. One possibility is that
your files aren’t in /data; another is that they’re not named *.fastq.gz.

Note

This protocol takes many hours (days!) to run, so you might not want
to run it on all the data the first time. If you’re using the
example data, you can work with a subset of it by running this command
instead of the ln -fs command above:

for i in /data/*.fastq.gz
do
 gunzip -c $i | head -400000 | gzip > $(basename $i)
done

This will pull out the first 100,000 reads of each file (4 lines per record)
and put them in the current directory, which should be /mnt/work.

Find the right Illumina adapters

You’ll need to know which Illumina sequencing adapters were used for
your library in order to trim them off; do

ls /usr/local/share/adapters/

to see which ones are available. Below, we will use the TruSeq3-PE.fa
adapters.

Note

You’ll need to make sure these are the right adapters for your
data. If they are the right adapters, you should see that some of
the reads are trimmed; if they’re not, you won’t see anything
get trimmed.

Adapter trim each pair of files

(From this point on, you may want to be running things inside of
screen, so that you detach and log out while it’s running; see
Using ‘screen’ for more information.)

If you’re following along using the Nematostella data, you should have a
bunch of files that look like this (use ‘ls’ to show them):

24HourB_GCCAAT_L002_R1_001.fastq.gz
 ^^

Each file with an R1 in its name should have a matching file with an R2 –
these are the paired ends.

Note

You’ll need to replace <R1 FILE> and <R2 FILE>, below, with the
names of your actual R1 and R2 files. You’ll also need to replace
<SAMPLE NAME> with something that’s unique to each pair of files.
It doesn’t really matter what, but you need to make sure it’s different
for each pair of files.

For each of these pairs, run the following:

make a temp directory
mkdir trim
cd trim

run trimmomatic
java -jar /usr/local/bin/trimmomatic-0.30.jar PE <R1 FILE> <R2 FILE> s1_pe s1_se s2_pe s2_se ILLUMINACLIP:/usr/local/share/adapters/TruSeq3-PE.fa:2:30:10

interleave the remaining paired-end files
/usr/local/share/khmer/scripts/interleave-reads.py s1_pe s2_pe | gzip -9c > ../<SAMPLE NAME>.pe.fq.gz

combine the single-ended files
cat s1_se s2_se | gzip -9c > ../<SAMPLE NAME>.se.fq.gz

go back up to the working directory and remove the temp directory
cd ..
rm -r trim

make it hard to delete the files you just created
chmod u-w *.pe.fq.gz *.se.fq.gz

To get a basic idea of what’s going on, please read the ‘#’ comments
above, but, briefly, this set of commands:

		creates a temporary directory, ‘trim/’

		runs ‘Trimmomatic’ in that directory to trim off the adapters, and then
puts remaining pairs (most of them!) in s1_pe and s2_pe, and any orphaned
singletons in s1_se and s2_se.

		interleaves the paired ends and puts them back in the working directory

		combines the orphaned reads and puts them back in the working directory

At the end of this you will have new files ending in ‘.pe.fq.gz’ and
‘.se.fq.gz’, representing the paired and orphaned quality trimmed
reads, respectively.

Automating things a bit

OK, once you’ve done this once or twice, it gets kind of tedious, doesn’t it?
I’ve written a script to write these commands out automatically. Run it
like so:

cd /mnt/work
python /usr/local/share/khmer/sandbox/write-trimmomatic.py > trim.sh

Run this, and then look at ‘trim.sh’ using the ‘more’ command –

more trim.sh

If it looks like it contains the right commands, you can run it by doing:

bash trim.sh

Note

This is a prime example of scripting to make your life much easier
and less error prone. Take a look at this file sometime –
‘more /usr/local/share/khmer/sandbox/write-trimmomatic.py’ – to get
some idea of how this works.

Quality trim each pair of files

After you run this, you should have a bunch of ‘.pe.fq.gz’ files and
a bunch of ‘.se.fq.gz’ files. The former are files that contain paired,
interleaved sequences; the latter contain single-ended, non-interleaved
sequences.

Next, for each of these files, run:

gunzip -c <filename> | fastq_quality_filter -Q33 -q 30 -p 50 | gzip -9c > <filename>.qc.fq.gz

This uncompresses each file, removes poor-quality sequences, and then
recompresses it. Note that (following Short-read quality evaluation [http://ged.msu.edu/angus/tutorials-2013/short-read-quality-evaluation.html])
you can also trim to a specific length by putting in a ‘fastx_trimmer
-Q33 -l 70 |‘ into the mix.

If fastq_quality_filter complains about invalid quality scores, try
removing the -Q33 in the command; Illumina has blessed us with multiple
quality score encodings.

Automating this step

This step can be automated with a ‘for’ loop at the shell prompt. Try:

for i in *.pe.fq.gz *.se.fq.gz
do
 echo working with $i
 newfile="$(basename $i .fq.gz)"
 gunzip -c $i | fastq_quality_filter -Q33 -q 30 -p 50 | gzip -9c > "${newfile}.qc.fq.gz"
done

What this loop does is:

		for every file ending in pe.fq.gz and se.fq.gz,

		print out a message with the filename,

		construct a name ‘newfile’ that omits the trailing .fq.gz

		uncompresses the original file, passes it through fastq, recompresses it,
and saves it as ‘newfile’.qc.fq.gz

Extracting paired ends from the interleaved files

The fastx utilities that we’re using to do quality trimming aren’t
paired-end aware; they’re removing individual sequences. Because the
pe files are interleaved, this means that there may now be some orphaned
sequences in there. Downstream, we will want to pay special attention
to the remaining paired sequences, so we want to separate out the pe
and se files. How do we go about that? Another script, of course!

The khmer script ‘extract-paired-reads.py’ does exactly that.
You run it on an interleaved file that may have some orphans, and it
produces .pe and .se files afterwards, containing pairs and orphans
respectively.

To run it on all of the pe qc files, do:

for i in *.pe.qc.fq.gz
do
 /usr/local/share/khmer/scripts/extract-paired-reads.py $i
done

Finishing up

You should now have a whole mess of files. For example, in the Nematostella
data, for each of the original input files, you’ll have:

24HourB_GCCAAT_L002_R1_001.fastq.gz - the original data
24HourB_GCCAAT_L002_R2_001.fastq.gz
24HourB_GCCAAT_L002_R1_001.pe.fq.gz - adapter trimmed pe
24HourB_GCCAAT_L002_R1_001.pe.qc.fq.gz - FASTX filtered
24HourB_GCCAAT_L002_R1_001.pe.qc.fq.gz.pe - FASTX filtered PE
24HourB_GCCAAT_L002_R1_001.pe.qc.fq.gz.se - FASTX filtered SE
24HourB_GCCAAT_L002_R1_001.se.fq.gz - adapter trimmed orphans
24HourB_GCCAAT_L002_R1_001.se.qc.fq.gz - FASTX filtered orphans

Yikes! What to do?

Well, first, you can get rid of the original data. You already have it on a
disk somewhere, right?

rm *.fastq.gz

Next, you can get rid of the ‘pe.fq.gz’ and ‘se.fq.gz’ files, since you
only want the QC files. So:

rm *.pe.fq.gz *.se.fq.gz

And, finally, you can toss the pe.fq.gz files, because you’ve turned those
into .pe and .se files.

rm *.pe.qc.fq.gz

So now you should be left with only three files for each sample:

24HourB_GCCAAT_L002_R1_001.pe.qc.fq.gz.pe - FASTX filtered PE
24HourB_GCCAAT_L002_R1_001.pe.qc.fq.gz.se - FASTX filtered SE
24HourB_GCCAAT_L002_R1_001.se.qc.fq.gz - FASTX filtered orphans

Things to think about

Note that the filenames, while ugly, are conveniently structured with the
history of what you’ve done. This is a good idea.

Also note that we’ve conveniently named the files so that we can remove
the unwanted ones en masse. This is a good idea, too.

Renaming files

I’m a fan of keeping the files named somewhat sensibly, and keeping them
compressed. Let’s do some mass renaming:

for i in *.pe.qc.fq.gz.pe
do
 newfile="$(basename $i .pe.qc.fq.gz.pe).pe.qc.fq"
 mv $i $newfile
 gzip $newfile
done

and also some mass combining:

for i in *.pe.qc.fq.gz.se
do
 otherfile="$(basename $i .pe.qc.fq.gz.se).se.qc.fq.gz"
 gunzip -c $otherfile > combine
 cat $i >> combine
 gzip -c combine > $otherfile
 rm $i combine
done

and finally, make the end product files read-only:

chmod u-w *.qc.fq.gz

to make sure you don’t accidentally delete something.

Saving the files

At this point, you should save these files, which will be used in two
ways: first, for assembly; and second, for mapping, to do quantitation
and ultimately comparative expression analysis. You can save them by
doing this:

mkdir save
mv *.qc.fq.gz save
du -sk save

This puts the data you want to save into a subdirectory named ‘save’, and
calculates the size.

Now, create a volume of the given size – divide by a thousand to get
gigabytes, multiply by 1.1 to make sure you have enough room, and then
follow the instructions in Getting started with Amazon EC2. Once
you’ve mounted it properly (I would suggest mounting it on /save
instead of /data!), then do

rsync -av save /save

which will copy all of the files over from the ./save directory onto the
‘/save’ disk. Then ‘umount /save’ and voila, you’ve got a copy of the files!

Next stop: 2. Applying Digital Normalization.

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.2.2.

metagenomics/index.html

 Navigation

 		
 index

 		khmer-protocols 0.8.3 documentation »

The Kalamazoo Metagenome Assembly protocol

		author:		Adina Howe and Titus Brown

		1. Quality Trimming and Filtering Your Sequences

		2. Running digital normalization

		3. Partitioning

		4. Assembling

		5. Mapping and abundance quantitation

		Annotating your metagenome with Prokka

		BLASTing your assembled data

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.2.2.

mrnaseq/6-annotating-transcript-families.html

 Navigation

 		
 index

 		khmer-protocols 0.8.3 documentation »

6. Annotating transcript families

You can start with the ‘trinity-nematostella.renamed.fa.gz’ file from the
previous page (5. Building transcript families) _or_ download
a precomputed one:

cd /mnt
curl -O http://public.ged.msu.edu.s3.amazonaws.com/trinity-nematostella.renamed.fa.gz

Note

The BLASTs below will take a long time, like 24-36 hours. If you
want to work with canned BLASTs, do:

cd /mnt
curl -O http://public.ged.msu.edu.s3.amazonaws.com/nema.x.mouse.gz
curl -O http://public.ged.msu.edu.s3.amazonaws.com/mouse.x.nema.gz
gunzip nema.x.mouse.gz
gunzip mouse.x.nema.gz

However, if you built your own transcript families, you’ll need to
rerun these BLASTs.

Install BLAST

Make sure you’ve updated BLAST, as in BLASTing your assembled data:

cd /root

curl -O ftp://ftp.ncbi.nih.gov/blast/executables/release/2.2.24/blast-2.2.24-x64-linux.tar.gz
tar xzf blast-2.2.24-x64-linux.tar.gz
cp blast-2.2.24/bin/* /usr/local/bin
cp -r blast-2.2.24/data /usr/local/blast-data

Doing a preliminary annotation against mouse

Now let’s assign putative homology & orthology to these transcripts, by
doing BLASTs & reciprocal best hit analysis. First, uncompress your
transcripts file:

cd /mnt
gunzip trinity-nematostella.renamed.fa.gz

Now, grab the latest mouse RefSeq:

curl -O ftp://ftp.ncbi.nih.gov/refseq/M_musculus/mRNA_Prot/mouse.protein.faa.gz
gunzip mouse.protein.faa.gz

Format both as BLAST databases:

formatdb -i mouse.protein.faa -o T -p T
formatdb -i trinity-nematostella.renamed.fa -o T -p F

And, now, if you haven’t downloaded the canned BLAST data above, run
BLAST in both directions. Note, this may take ~24 hours or longer;
you probably want to run it in screen:

blastall -i trinity-nematostella.renamed.fa -d mouse.protein.faa -e 1e-3 -p blastx -o nema.x.mouse -a 8 -v 4 -b 4
blastall -i mouse.protein.faa -d trinity-nematostella.renamed.fa -e 1e-3 -p tblastn -o mouse.x.nema -a 8 -v 4 -b 4

Assigning names to sequences

Now, calculate putative homology (best BLAST hit) and orthology
(reciprocal best hits):

python /usr/local/share/eel-pond/make-uni-best-hits.py nema.x.mouse nema.x.mouse.homol
python /usr/local/share/eel-pond/make-reciprocal-best-hits.py nema.x.mouse mouse.x.nema nema.x.mouse.ortho

Prepare some of the mouse info:

python /usr/local/share/eel-pond/make-namedb.py mouse.protein.faa mouse.namedb
python -m screed.fadbm mouse.protein.faa

And, finally, annotate the sequences:

python /usr/local/share/eel-pond/annotate-seqs.py trinity-nematostella.renamed.fa nema.x.mouse.ortho nema.x.mouse.homol

After this last, you should see:

207533 sequences total
10471 annotated / ortho
95726 annotated / homol
17215 annotated / tr
123412 total annotated

If any of these numbers are zero on the nematostella data, then you
probably need to redo the BLAST.

This will produce a file ‘trinity-nematostella.renamed.fa.annot’, which
will have sequences that look like this:

>nematostella.id1.tr115222 h=43% => suppressor of tumorigenicity 7 protein isoform 2 [Mus musculus] 1_of_7_in_tr115222 len=1635 id=1 tr=115222 1_of_7_in_tr115222 len=1635 id=1 tr=115222

I suggest renaming this file to ‘nematostella.fa’ and using it for
BLASTs (see BLASTing your assembled data).

cp trinity-nematostella.renamed.fa.annot nematostella.fa

The annotate-seqs command will also produce two CSV files. The first,
trinity-nematostella.renamed.fa.annot.csv, is small, and contains
sequence names linked to orthology and homology information. The secnod,
trinity-nematostella.renamed.fa.annot.large.csv, is large, and
contains all of the same information as in the first but also contains
all of the actual DNA sequence in the last column. (Some spreadsheet
programs may not be able to open it.) You can do:

cp *.csv /root/Dropbox

to copy them locally, if you have set up Dropbox (see:
Installing Dropbox on your EC2 machine).

Next: 7. Expression analysis (with RSEM).

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.2.2.

mrnaseq/installing-blastkit.html

 Navigation

 		
 index

 		khmer-protocols 0.8.3 documentation »

BLASTing your assembled data

One thing everyone wants to do is BLAST sequence data, right? Here’s a
simple way to set up a stylish little BLAST server that lets you search
your newly assembled sequences.

Installing blastkit

Installing some prerequisites:

pip install pygr
pip install whoosh
pip install git+https://github.com/ctb/pygr-draw.git
pip install git+https://github.com/ged-lab/screed.git
apt-get -y install lighttpd

and configure them:

cd /etc/lighttpd/conf-enabled
ln -fs ../conf-available/10-cgi.conf ./
echo 'cgi.assign = (".cgi" => "")' >> 10-cgi.conf
echo 'index-file.names += ("index.cgi") ' >> 10-cgi.conf

/etc/init.d/lighttpd restart

Next, install BLAST:

cd /root

curl -O ftp://ftp.ncbi.nih.gov/blast/executables/release/2.2.24/blast-2.2.24-x64-linux.tar.gz
tar xzf blast-2.2.24-x64-linux.tar.gz
cp blast-2.2.24/bin/* /usr/local/bin
cp -r blast-2.2.24/data /usr/local/blast-data

And put in blastkit:

cd /root
git clone https://github.com/ctb/blastkit.git -b ec2
cd blastkit/www
ln -fs $PWD /var/www/blastkit

mkdir files
chmod a+rxwt files
chmod +x /root

and run check.py:

cd /root/blastkit
python ./check.py

It should say everything is OK.

Adding the data

If you’ve just finished a transcriptome assembly (3. Running the Actual Assembly) then
you can do this to copy your newly generated assembly into the right place:

cp trinity_out_dir/Trinity.fasta /root/blastkit/db/db.fa

Alternatively, you can grab my version of the assembly (from running this
tutorial):

cd /root/blastkit
curl -O https://s3.amazonaws.com/public.ged.msu.edu/trinity-nematostella-raw.fa.gz
gunzip trinity-nematostella-raw.fa.gz
mv trinity-nematostella-raw.fa db/db.fa

Formatting the database

After you’ve done either of the above, format and install the database
for blastkit:

cd /root/blastkit
formatdb -i db/db.fa -o T -p F
python index-db.py db/db.fa

Done!

Note

You can install any file of DNA sequences you want this way; just copy
it into /root/blastkit/db/db.fa and run the indexing commands, above.

Running blastkit

Figure out what your machine name is
(ec2-???-???-???-???.compute-1.amazonaws.com) and go to:

http://machine-name/blastkit/

Make sure you have enabled port 80 in your security settings on Amazon.

(If you’re using the Nematostella data set, try this sequence:

CAGCCTTTAGAAGGAAACAGTGGCAATATATAATTCTAGATGAAGCTCAGAATATCAAAA
ATTTTAAAAGTCAAAGGTGGCAGTTGCTGTTGAATTTTTCAAGTCAGAGGAGACTTTTGT
TGACTGGAACACCTTTGCAGAACAATTTGATGGAGCTGTGGTCGCTTATGCATTTCCTCA
TGCCATCAATGTTTGCTTCTCATAAAGATTTTAGGGAGTGGTTTTCTAACCCTGTTACAG
GGATGATTGAAGGGAATTCAG

It should match something in your assembly.)

Next: 5. Building transcript families

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.2.2.

metagenomics/4-assemble.html

 Navigation

 		
 index

 		khmer-protocols 0.8.3 documentation »

4. Assembling

At last! All that filtering and diginorming is done, and we can get
down to the serious business of assembling. Huzzah!

Let’s start with some collection of group files in /mnt/assembly.

Install some assemblers

Let’s try assembling the sequences with three different assemblers: Velvet,
IDBA, and SPADes.

First, let’s install Velvet [http://www.ebi.ac.uk/~zerbino/velvet/]:

cd /root
curl -O http://www.ebi.ac.uk/~zerbino/velvet/velvet_1.2.10.tgz
tar xzf velvet_1.2.10.tgz
cd velvet_1.2.10
make MAXKMERLENGTH=51
cp velvet? /usr/local/bin

And also IDBA [https://code.google.com/p/hku-idba/]:

cd /root
curl -O https://hku-idba.googlecode.com/files/idba-1.1.1.tar.gz
tar xzf idba-1.1.1.tar.gz
cd idba-1.1.1
./configure && make
cp bin/idba_ud /usr/local/bin

And also SPADes [http://bioinf.spbau.ru/spades/]. First:

apt-get -y install cmake

then:

wget http://spades.bioinf.spbau.ru/release2.5.1/SPAdes-2.5.1.tar.gz
tar -xzf SPAdes-2.5.1.tar.gz
cd SPAdes-2.5.1
PREFIX=/usr/local ./spades_compile.sh

Preparing the data

Start in the assembly work directory:

cd /mnt/assembly

Each assembler takes in data in a slightly different format. Velvet
is the most flexible: it can take in paired-end and orphaned reads,
in FASTA or FASTQ format, gzipped or not. However, SPADes requires
paired-end FASTQ, while IDBA requires paired-end FASTA. So we need
to do some conversions.

First, let’s gunzip all of the pe.fq files (for SPADes):

for i in *.pe.fq.gz
do
 gunzip -c $i > $(basename $i .gz)
done

and convert them all into FASTA (for IDBA):

for i in *.pe.fq
do
 name=$(basename $i .fq).fa
 python /usr/local/share/khmer/sandbox/fastq-to-fasta.py $i > $name
done

Setting up the assemblies

We’re going to set up a bunch of assemblies in a script called
‘do-assembly.sh’. This will let us execute them in parallel if we
want to, and just keep track of things if we don’t want to.

Let’s make sure the file is empty first:

rm -f do-assembly.sh

And install GNU parallel:

cd /root
curl -O http://ftp.gnu.org/gnu/parallel/parallel-latest.tar.bz2
tar xjf parallel-latest.tar.bz2
cd parallel-*
./configure && make && make install
cd /mnt/assembly

Setting up Velvet runs

I personally really like the Velvet assembler as a first cut
assembler, since it yields pretty good results in a wide variety of
situations. It’s also rather fast. The downside is that you have to
specify a ‘k’ parameter, which gets annoying because it gives you
different results and you have to run a lot of assemblies. Typically,
I just run a bunch of ‘k’s, and evaluate the results.

So, let’s just do that:

for i in *.pe.fq.gz; do
 name=$(basename $i .pe.fq.gz);
 pefile=$name.pe.fq.gz
 sefile=$name.se.fq.gz;
 for k in {19..51..2}; do
 echo "velveth $name.velvet.$k.d $k -fastq.gz -shortPaired $pefile -short $sefile && \
 velvetg $name.velvet.$k.d -exp_cov auto -cov_cutoff auto"
 done
done >> do-assembly.sh

Setting up IDBA runs

Set up a bunch of IDBA runs:

for i in *.pe.fa
do
 name=$(basename $i .pe.fa);
 echo "idba_ud --pre_correction -r $i -o $name.idba.d"
done >> do-assembly.sh

Setting up SPADes runs

And also set up a bunch of SPADes runs:

for i in *.pe.fq
do
 name=$(basename $i .pe.fq);
 echo "spades.py --sc --pe1-12 $name.pe.fq.gz -o $name.spades.d"
done >> do-assembly.sh

Running the assemblies

Now, run them all in parallel:

parallel -j 4 < do-assembly.sh

or, if you’re memory limited, one by one:

bash do-assembly.sh

Getting stats for the assemblies

To get some basic stats for the assemblies, run:

python /usr/local/share/khmer/sandbox/assemstats3.py 500 *.velvet.*.d/contigs.fa *idba.d/scaffold.fa *.spades.d/contigs.fasta

This will yield something like:

N sum max filename
38 671957 83467 dn.21/contigs.fa
32 668918 83568 dn.23/contigs.fa
35 668509 83401 dn.25/contigs.fa
31 671843 83817 dn.27/contigs.fa
32 669104 83721 dn.29/contigs.fa
32 672735 84066 dn.31/contigs.fa
32 673102 83774 dn.33/contigs.fa
31 674629 83912 dn.35/contigs.fa
31 677446 84200 dn.37/contigs.fa
33 681099 84554 dn.39/contigs.fa
35 685245 84852 dn.41/contigs.fa
40 686733 85276 dn.43/contigs.fa
41 649574 62719 nodn.21/contigs.fa
39 639388 62155 nodn.23/contigs.fa
49 646132 62145 nodn.25/contigs.fa
39 647100 83798 nodn.27/contigs.fa
38 650487 83750 nodn.29/contigs.fa
33 649863 83770 nodn.31/contigs.fa
31 636979 83822 nodn.33/contigs.fa
35 645536 83856 nodn.35/contigs.fa
36 647848 83800 nodn.37/contigs.fa
33 654660 83934 nodn.39/contigs.fa
36 645126 83897 nodn.41/contigs.fa
34 660289 83231 idba.dn.d/scaffold.fa
45 666147 41120 idba.nodn.d/scaffold.fa

Generating a final set of contigs

Next, for each partition of input reads, let’s pick one assembly to
represent the partition. (An alternative would be to use something like
minimus2 to merge assemblies, but we think assembling assemblies is a
bad idea.) To pick the best assembly, we’re going to choose the one
that
foo

for i in {0..1000};
do
 groupid=$(printf kak.group%04d $i);
 if [-e ${groupid}.pe.fq.gz]; then
 echo $groupid
 fi
done > grouplist.txt

for group in $(cat grouplist.txt)
do
 python /usr/local/share/khmer/sandbox/calc-best-assembly.py -q $group.{*velvet.*.d/contigs.fa,*idba.d/scaffold.fa,*spades.d/contigs.fasta} -o $group.best.fa
done > best-assemblies.txt

python /usr/local/share/khmer/sandbox/multi-rename.py testasm *.best.fa > final-assembly.fa

After this, ‘final-assembly.fa’ will contain the final set of contigs,
with each contig renamed to ‘testasm.N’. To get stats:

python /usr/local/share/khmer/sandbox/assemstats3.py 500 final-assembly.fa

Note, ‘best-assemblies.txt’ contains the list of “best” assembly file names,
if you want to know which ones were picked.

Next: 5. Mapping and abundance quantitation.

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.2.2.

metagenomics/2-diginorm.html

 Navigation

 		
 index

 		khmer-protocols 0.8.3 documentation »

2. Running digital normalization

Note

Make sure you’re running in screen!

Start with the QC’ed files from 1. Quality Trimming and Filtering Your Sequences or copy them into a
working directory; you should start this in /mnt/assembly.

Note

You can start from this point by taking the following files from
the data on snapshot snap-8f89b092:

SRR492065.pe.qc.fq.gz
SRR492065.se.qc.fq.gz
SRR492066.pe.qc.fq.gz
SRR492066.se.qc.fq.gz

Just do:

mkdir /mnt/assembly
cd /mnt/assembly
cp /data/SRR49206?.?e.qc.fq.gz /mnt/assembly

Run a first round of digital normalization

Normalize everything to a coverage of 20, starting with the (more valuable)
PE reads; keep pairs using ‘-p’:

/usr/local/share/khmer/scripts/normalize-by-median.py -k 20 -C 20 -N 4 -x 5e8 -p --savehash normC20k20.kh *.pe.qc.fq.gz

...and continuing into the (less valuable but maybe still useful) SE reads:

/usr/local/share/khmer/scripts/normalize-by-median.py -C 20 --savehash normC20k20.kh --loadhash normC20k20.kh *.se.qc.fq.gz

This produces a set of ‘.keep’ files, as well as a normC20k20.kh
database file.

Error-trim your data

Use ‘filter-abund’ to trim off any k-mers that are abundance-1 in
high-coverage reads. The -V option is used to make this work better
for variable coverage data sets:

/usr/local/share/khmer/scripts/filter-abund.py -V normC20k20.kh *.keep

This produces .abundfilt files containing the trimmed sequences.

The process of error trimming could have orphaned reads, so split the
PE file into still-interleaved and non-interleaved reads:

for i in *.pe.qc.fq.gz.keep.abundfilt
do
 /usr/local/share/khmer/scripts/extract-paired-reads.py $i
done

This leaves you with PE files (.pe.qc.fq.gz.keep.abundfilt.pe) and
two sets of SE files (.se.qc.fq.gz.keep.abundfilt and
.pe.qc.fq.gz.keep.abundfilt.se). (Yes, the naming scheme does make
sense. Trust me.)

Normalize down to C=5

Now that we’ve eliminated many more erroneous k-mers, let’s ditch some more
high-coverage data. First, normalize the paired-end reads:

/usr/local/share/khmer/scripts/normalize-by-median.py -C 5 -k 20 -N 4 -x 5e8 --savehash normC5k20.kh -p *.pe.qc.fq.gz.keep.abundfilt.pe

and then do the remaining single-ended reads:

/usr/local/share/khmer/scripts/normalize-by-median.py -C 5 --savehash normC5k20.kh --loadhash normC5k20.kh *.pe.qc.fq.gz.keep.abundfilt.se *.se.qc.fq.gz.keep.abundfilt

Compress and combine the files

Now let’s tidy things up. Here are the paired files (kak =
keep/abundfilt/keep):

gzip -9c SRR492065.pe.qc.fq.gz.keep.abundfilt.pe.keep > SRR492065.pe.kak.qc.fq.gz
gzip -9c SRR492066.pe.qc.fq.gz.keep.abundfilt.pe.keep > SRR492066.pe.kak.qc.fq.gz

and the single-ended files:

gzip -9c SRR492066.pe.qc.fq.gz.keep.abundfilt.se.keep SRR492066.se.qc.fq.gz.keep.abundfilt.keep > SRR492066.se.kak.qc.fq.gz
gzip -9c SRR492065.pe.qc.fq.gz.keep.abundfilt.se.keep SRR492065.se.qc.fq.gz.keep.abundfilt.keep > SRR492065.se.kak.qc.fq.gz

You can now remove all of these various files:

SRR492066.pe.qc.fq.gz.keep
SRR492066.pe.qc.fq.gz.keep.abundfilt
SRR492066.pe.qc.fq.gz.keep.abundfilt.pe
SRR492066.pe.qc.fq.gz.keep.abundfilt.pe.keep
SRR492066.pe.qc.fq.gz.keep.abundfilt.se
SRR492066.pe.qc.fq.gz.keep.abundfilt.se.keep

by typing:

rm *.keep *.abundfilt *.pe *.se

If you are not doing partitioning (see 3. Partitioning), you may
also want to remove the k-mer hash tables:

rm *.kh

If you are running partitioning, you can remove the normC20k20.kh file:

rm normC20k20.kh

but you will need the normC5k20.kh file.

Read stats

Try running:

/usr/local/share/khmer/sandbox/readstats.py *.kak.qc.fq.gz *.?e.qc.fq.gz

after a long wait, you’ll see

861769600 bp / 8617696 seqs; 100.0 average length -- SRR492065.pe.qc.fq.gz
79586148 bp / 802158 seqs; 99.2 average length -- SRR492065.se.qc.fq.gz
531691400 bp / 5316914 seqs; 100.0 average length -- SRR492066.pe.qc.fq.gz
89903689 bp / 904157 seqs; 99.4 average length -- SRR492066.se.qc.fq.gz

173748898 bp / 1830478 seqs; 94.9 average length -- SRR492065.pe.kak.qc.fq.gz
8825611 bp / 92997 seqs; 94.9 average length -- SRR492065.se.kak.qc.fq.gz
52345833 bp / 550900 seqs; 95.0 average length -- SRR492066.pe.kak.qc.fq.gz
10280721 bp / 105478 seqs; 97.5 average length -- SRR492066.se.kak.qc.fq.gz

This shows you how many sequences were in the original QC files, and
how many are left in the ‘kak’ files. Not bad – considerably more
than 80% of the reads were eliminated in the kak!

Next: 3. Partitioning

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 © Copyright 2013, C. Titus Brown et al..
 Created using Sphinx 1.2.2.

metagenomics/3-partition.html

 Navigation

 		
 index

 		khmer-protocols 0.8.3 documentation »

3. Partitioning

Note

Partitioning may not be needed or useful for data sets with low or
medium richness. You can proceed to 4. Assembling and use the
pe.qc.fq.gz and se.fq.fq.gz files from 2. Running digital normalization in place of
XXX. @@

Note

Make sure you’re running in screen!

Start with the QC’ed files from 2. Running digital normalization or copy them into a
working directory; you should be in /mnt/assembly below.

Simple partitioning

Partitioning is a rather complex process – nowhere near as nice and
simple as digital normalization. However, we do have a simple script
to run the basic stuff; if this script is too slow, or doesn’t work
well for big chunks of data, we might have remedies, so please
contact us. But in the
meantime, here is a simple procedure.

First, eliminate highly repetitive k-mers that could join multiple species
and rename the files appropriately:

python /usr/local/share/khmer/sandbox/filter-below-abund.py normC5k20.kh *.fq.gz

for i in *.below
do
 mv $i $i.fq
done

Note

You will need the normC5k20.kh file from 2. Running digital normalization for this
step. If you don’t have it, you can regenerate it like so:

/usr/local/share/khmer/scripts/load-into-counting.py -k 20 -N 4 -x 5e8 normC5k20.kh *.qc.fq.gz

Next, run partitioning:

/usr/local/share/khmer/scripts/do-partition.py -k 32 -x 1e9 --threads 4 kak *.kak.qc.fq.gz.below.fq

This should take about 15 minutes, and will produce ‘.part’ files. These
are now FASTQ files that contain partition annotations. For example, check
out:

head SRR492065.pe.kak.qc.fq.gz.below.part

Extracting