================================ 2. Running digital normalization ================================ .. shell start .. note:: Make sure you're running in screen! Start with the QC'ed files from :doc:`1-quality` or copy them into a working directory; Run a First Round of Digital Normalization ------------------------------------------ Normalize everything to a coverage of 20, starting with the (more valuable) PE reads; keep pairs using '-p' :: cd /mnt/work normalize-by-median.py -p -k 20 -C 20 -N 4 -x 1e9 --savetable normC20k20.kh *.pe.qc.fq.gz and continuing into the (less valuable but maybe still useful) SE reads :: normalize-by-median.py -C 20 --loadtable normC20k20.kh --savetable normC20k20.kh *.se.qc.fq.gz This produces a set of '.keep' files, as well as a normC20k20.kh database file. Error-trim Our Data -------------------- Use 'filter-abund' to trim off any k-mers that are abundance-1 in high-coverage reads. The -V option is used to make this work better for variable coverage data sets: :: filter-abund.py -V normC20k20.kh *.keep This produces .abundfilt files containing the trimmed sequences. The process of error trimming could have orphaned reads, so split the PE file into still-interleaved and non-interleaved reads :: for i in *.pe.*.keep* do extract-paired-reads.py $i done This leaves you with PE files (.pe.qc.fq.gz.keep.abundfilt.pe) and two sets of SE files (.se.qc.fq.gz.keep.abundfilt and .pe.qc.fq.gz.keep.abundfilt.se). (Yes, the naming scheme does make sense. Trust me.) Normalize Down to C=5 --------------------- Now that we've eliminated many more erroneous k-mers, let's ditch some more high-coverage data. First, normalize the paired-end reads :: normalize-by-median.py -C 5 -k 20 -N 4 -x 1e9 --savetable normC5k20.kh -p *.pe.qc.fq.gz.keep.abundfilt.pe and then do the remaining single-ended reads :: normalize-by-median.py -C 5 --savetable normC5k20.kh --loadtable normC5k20.kh *.pe.qc.fq.gz.keep.abundfilt.se *.se.qc.fq.gz.keep.abundfilt Compress and Combine the Files ------------------------------ Now let's tidy things up. Here are the paired files (kak = keep/abundfilt/keep) :: for pe in *.pe.qc.fq.gz.keep.abundfilt.pe.keep do se=${pe/pe.keep/se.keep} newfile=${pe/.pe.qc.fq.gz.keep.abundfilt.pe.keep/.pe.kak.qc.fq.gz} cat $pe $se |gzip -c > $newfile done and for the single-ended files :: for se in *.se.qc.fq.gz.keep.abundfilt.keep do newfile=${se/.se.qc.fq.gz.keep.abundfilt.keep/.se.kak.qc.fq.gz} gzip -c $se >$newfile done You can now remove all of these various files:: *.pe.qc.fq.gz.keep *.pe.qc.fq.gz.keep.abundfilt *.pe.qc.fq.gz.keep.abundfilt.pe *.pe.qc.fq.gz.keep.abundfilt.pe.keep *.pe.qc.fq.gz.keep.abundfilt.se *.pe.qc.fq.gz.keep.abundfilt.se.keep by typing :: rm *.keep *.abundfilt *.pe *.se If you are *not* doing partitioning (see :doc:`3-partition`), you may also want to remove the k-mer hash tables:: rm *.kh If you *are* running partitioning, you can remove the ``normC20k20.kh`` file:: rm normC20k20.kh but you will need the ``normC5k20.kh`` file. Read Stats ---------- Try running :: /usr/local/share/khmer/sandbox/readstats.py *.kak.qc.fq.gz *.?e.qc.fq.gz after a long wait, you'll see:: --------------- 861769600 bp / 8617696 seqs; 100.0 average length -- SRR606249.pe.qc.fq.gz 79586148 bp / 802158 seqs; 99.2 average length -- SRR606249.se.qc.fq.gz 531691400 bp / 5316914 seqs; 100.0 average length -- SRR606249.pe.qc.fq.gz 89903689 bp / 904157 seqs; 99.4 average length -- SRR606249.se.qc.fq.gz 173748898 bp / 1830478 seqs; 94.9 average length -- SRR606249.pe.kak.qc.fq.gz 8825611 bp / 92997 seqs; 94.9 average length -- SRR606249.se.kak.qc.fq.gz 52345833 bp / 550900 seqs; 95.0 average length -- SRR606249.pe.kak.qc.fq.gz 10280721 bp / 105478 seqs; 97.5 average length -- SRR606249.se.kak.qc.fq.gz --------------- This shows you how many sequences were in the original QC files, and how many are left in the 'kak' files. Not bad -- considerably more than 80% of the reads were eliminated in the kak! ---- Next: :doc:`3-partition`